Stochastic Versus Deterministic Models of Oxygen Transport in the Tissue

  • R. Wodick
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 191)


The difficulties in describing gas transport in the tissue are caused by the close connexion of diffusion with convection. For gas transport in the tissue the following differential equation is valid:
$${\alpha ^*}(p(\vec r,t),{u_{i)}}\frac{{\partial p(\vec r,t)}}{{\partial t}} = - A(\vec r,t) + Q(\vec r,t) + div\{ (D(\vec r){\alpha ^*}(p(\vec r,t),{u_i}) \cdot grad{\kern 1pt} p(\vec r,t)\} - \vec v(\vec r,t) \cdot grad{\kern 1pt} \{ {\alpha ^*}(p(\vec r,t),{u_i}) \cdot p(\vec r,t)\} ,$$
\(p(\vec r,t)\) describes the pressure of the gas depending on the site, \(\vec r\), and the time, \(t.{\alpha ^*}(p(\vec r,t){u_i})\) is the solubility coefficient and the apparent solubility, respectively, of the gas. The value of \({\alpha ^*}(p(\vec r,t){u_i})\) depends, for oxygen in tissue containing hemoglobin or myoglobin, on the pressure, \(p(\vec r,t)\), and on the parameters u. as, for instance, Pco2, which here are not specified in detail. \(A(\vec r,t)\) and \(Q(\vec r,t)\), respectively, describe the sinks and sources of the gas. For oxygen \(A(\vec r,t)\) means tissue respiration. \(D(\vec r)\) is the diffusion coefficient of the gas examined. \(\vec v(\vec r,t)\) is the flow velocity of the blood. In its general form we deal with a nonlinear differential equation.


Apparent Diffusion Coefficient Oxygen Transport Random Generator Capillary Structure Capillary Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krogh, A.: J. Physiol. 52, 391–408 and (1918/19).Google Scholar
  2. 1a.
    Krogh, A.: J. Physiol. 52, 409–415 (1918/19).Google Scholar
  3. 2.
    Opitz, E., Schneider, M.: Ergebn. Physiol. 46, 126–202 (1950).Google Scholar
  4. 3.
    Thews, G.: Acta biotheor. 10, 105–136 (1953).CrossRefGoogle Scholar
  5. 4.
    Thews, G.: Pflügers Arch. ges. Physiol. 271, 197–226 (1960).CrossRefGoogle Scholar
  6. 5.
    Roughton, F.R.S.: Proc. roy. Soc. B 140, 203–230 (1952),CrossRefGoogle Scholar
  7. 6.
    Reneau, D.D., Bruley, D.F., Knisely, M.H.: A mathematical simulation of oxygen release, diffusion, and consumption in the capillaries and tissue of the human brain. Proceedings 33rd. Annual Chemical Engineering in Biology and Medicine ed. by D. Hershey, Plenum Press, New York 135–241 (1967).Google Scholar
  8. 7.
    Reneau, D.D., Bruley, D.F., Knisely, M.H.: AICHJ 15, 916–925 (1969).CrossRefGoogle Scholar
  9. 8.
    Halberg, M.R., Bruley, D.F., Knisely, M.H.: Simulation 206–212 (1970).Google Scholar
  10. 9.
    Diemer, K.: Pflügers Arch. ges. Physiol. 285, 99–108 and 109–118 (1965).CrossRefGoogle Scholar
  11. 10.
    Metzger, H.: Dissertation Darmstadt (1967).Google Scholar
  12. 11.
    Grunewald, W.: Pflügers Arch. 309, 266–284 (1969).PubMedCrossRefGoogle Scholar
  13. 12.
    Lubbers, D.W., Wodick, R.: Naturwissenschaften 59, 362–363 (1972).Google Scholar
  14. 13.
    Lubbers, D.W., Wodick, R.: Z. Anal. Chem. 261, 271–280 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • R. Wodick
    • 1
  1. 1.Max-Planck-Institut für ArbeitsphysiologieDortmundWest Germany

Personalised recommendations