Advertisement

Inclusive Decays of Heavy Flavours

  • G. Altarelli
Part of the The Subnuclear Series book series (SUS, volume 21)

Abstract

The study of weak decays of heavy flavoured particles is important as a source of information on many interesting aspects of the SU(3) ⊗ SU(2) ⊗ U(1) standard theory. Strong and electroweak effects all contribute to the determination of the decay properties. Much light can be shed on important new and old problems such as the understanding of parton dynamics, the riddle of non-leptonic weak decays of strange particles, and the determination of fundamental parameters in the theory such as the K-M mixing angles. The inclusive (semileptonic and total) decay rates are especially important in that they are the simplest and imply the least amount of model dependency. Many interesting problems are already met at this level, some of them not yet clarified, so that we shall concentrate on inclusive rates in this lecture.

Keywords

Heavy Quark Strange Quark Free Field Semileptonic Decay Gluon Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Particle Data Group, Phys. Lett. 111B: 1 (1982).Google Scholar
  2. 2.
    M. Kobayashi and T. Maskawa, Progr. Theor. Phys. 49: 652 (1973).CrossRefGoogle Scholar
  3. 3.
    J.L. Cortes, X.Y. Pham and A. Tounsi, Phys. Rev. D25: 188 (1982).Google Scholar
  4. 4.
    N. Cabibbo and L. Maiani, Phys. Lett. 79B: 109 (1978)Google Scholar
  5. M. Suzuki, Nucl. Phys. B145: 420 (1978).CrossRefGoogle Scholar
  6. 5.
    G. Altarelli, N. Cabibbo, G. Corbò, L. Maiani and G. Martinelli, Nucl. Phys. B208: 365 (1982).CrossRefGoogle Scholar
  7. 6.
    N. Cabibbo, G. Corbò and L. Maiani, Nucl. Phys. B155: 93 (1979).CrossRefGoogle Scholar
  8. 7.
    G. Corbò, Phys. Lett. 116B: 298 (1982)Google Scholar
  9. — Nucl. Phys. B212: 99 (1983).CrossRefGoogle Scholar
  10. 8.
    For a review of charm decay see, for example, G. Trilling, Phys. Rep. 75: 57 (1982).CrossRefGoogle Scholar
  11. 9.
    L. Maiani, Phys. Lett. 62B: 183 (1976).Google Scholar
  12. 10.
    H. Abramowicz et al., Z. Phys. C 15: 19 (1982).CrossRefGoogle Scholar
  13. 11.
    C. Jarlskog, Rapporteur’s talk at Int. Europhysics Conf. on High Energy Physics, Brighton (UK), 1983.Google Scholar
  14. 12.
    K. Wilson, Phys. Rev. 179: 1499 (1969).CrossRefGoogle Scholar
  15. 13.
    M.A. Shifman, A.I. Vainshtein and V. I. Zakharov, Nucl. Phys. B120: 316 (1977)CrossRefGoogle Scholar
  16. A.I. Vainshtein and V. I. Zakharov, — Sov. Phys.-JETP 45: 670 (1977).Google Scholar
  17. 14.
    G. Altarelli, G. Curci, G. Martinelli and S. Petrarca, Phys. Lett. 99B: 141 (1981)Google Scholar
  18. G. Curci, G. Martinelli and S. Petrarca, — Nucl. Phys. B187: 461 (1981)CrossRefGoogle Scholar
  19. See also: G. Altarelli, Phys. Rep. 81: 1 (1982).CrossRefGoogle Scholar
  20. 15.
    B.W. Lee and M.K. Gaillard, Phys. Rev. Lett. 33: 108 (1974)CrossRefGoogle Scholar
  21. G. Altarelli and L. Maiani, Phys. Lett. 52B: 351 (1974).Google Scholar
  22. 16.
    For recent analyses see: F.I. Gilman and M.B. Wise, Phys. Rev. D20: 2392 (1979)Google Scholar
  23. B. Guberina and R.D. Peccei, Nucl. Phys. B163: 289 (1980)CrossRefGoogle Scholar
  24. F. Buccella, M. Lusignoli, L. Maiani and A. Pugliese, Nucl. Phys. B152: 461 (1979).CrossRefGoogle Scholar
  25. 17.
    L. Maiani, Proc. 21st Int. Conf. on High Energy Physics, Paris, 1982, J. Phys. 43: Suppl. 12, C3–631 (1982).Google Scholar
  26. 18.
    B.W. Lee, M.K. Gaillard and G. Rosner, Rev. Mod. Phys. 47: 277 (1975).CrossRefGoogle Scholar
  27. G. Altarelli, N. Cabibbo and L. Maiani, Nucl. Phys. B88: 285 (1975)CrossRefGoogle Scholar
  28. N. Cabibbo and L. Maiani, — Phys. Lett. 57B: 277 (1975)Google Scholar
  29. S.R. Kingsley, S. Treiman, F. Wilczek and A. Zee, Phys. Rev. Dll: 1914 (1975).Google Scholar
  30. J. Ellis, M.K. Gaillard and D. Nanopoulos, Nucl. Phys. B100: 313 (1975).CrossRefGoogle Scholar
  31. 19.
    J.L. Cortes et al., Phys. Rev. D25: 188 (1982).Google Scholar
  32. U. Baur and H. Fritzsch, Phys. Lett. 109B: 402 (1982). See also: Q. Hokim and X.Y. Pham, Univ. Paris VI and VII preprint PAR-LPTHE 83/05 (1983).Google Scholar
  33. 20.
    B. Guberina, S. Nussinov, R.D. Peccei and R. Rückl, Phys. Lett. 98B: 111 (1979)Google Scholar
  34. See also: R.D. Peccei and R. Rückl, MPI-PAE/PTH 75/81/1981Google Scholar
  35. T. Kobayashi and N. Yamazaki, Progr. Theor. Phys. 65: 775 (1981).CrossRefGoogle Scholar
  36. 21.
    G. Altarelli and L. Maiani, Phys. Lett. 118B: 414 (1982).Google Scholar
  37. See also: H. Sawayanagi et al., Phys. Rev. D27: 2107 (1983).Google Scholar
  38. 22.
    M. Bander, D. Silverman and A. Soni, Phys. Rev. Lett. 44: 7 (1980); Errata 44: 962 (1980)CrossRefGoogle Scholar
  39. H. Fritzsch and P. Minkowsky, Phys. Lett. 90B: 455 (1980)Google Scholar
  40. P. Minkowsky, — Nucl. Phys. B171: 413 (1980)CrossRefGoogle Scholar
  41. W. Bernreuther, O. Nachtmann and B. Stech, Z. Phys. C4: 257 (1980).Google Scholar
  42. 23.
    H. Krasemann, Phys. Lett. 961B: 397 (1980).Google Scholar
  43. 24.
    V.A. Novikov et al., Phys. Rev. Lett. 38: 626 (1977)CrossRefGoogle Scholar
  44. E.V. Shuriak, Nucl. Phys. B198: 83 (1982).CrossRefGoogle Scholar
  45. 25.
    E. Golowich, Phys. Lett. 91B: 271 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • G. Altarelli
    • 1
    • 2
  1. 1.CERNGenevaSwitzerland
  2. 2.Dipartimento di FisicaUniversità “La Sapienza”, Rome INFNRomeItaly

Personalised recommendations