Advertisement

Spontaneous Supersymmetry Breaking in N=1 and N=2 Supergravity Theories Coupled to Matter Systems

  • S. Ferrara
Part of the The Subnuclear Series book series (SUS, volume 21)

Abstract

In these lectures we will discuss some aspects of spontaneously broken supersymmetric gauge theories with N=1 and N=2 local super-symmetry. Examples of the super-Higgs effect with vanishing cosmo-logical constant are exhibited and N=2 broken supergravity models with flat potentials are explicitly constructed. A subclass of the latter is connected to gauged supergravity models in five-dimensional space-time.

Keywords

Cosmological Constant Supersymmetry Breaking Vector Multiplet Gauge Field Chiral Multiplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review, see P. Fayet, Proc. 21st Int. Conf. on High-Energy Physics, Paris, 1982, P. Petiau and M. Porneuf, eds., J. Phys., 43: C3–673 (1982).Google Scholar
  2. R. Barbieri and S. Ferrara, Surveys in High-Energy Physics, 4: 33 (1983).CrossRefGoogle Scholar
  3. H. P. Nilles, Univ. of Geneva preprint UGVA-DPT 1983/12-412, to appear in Phys. Reports.Google Scholar
  4. H. E. Haber and G. L. Kane, Ann Arbor preprint (1984), to appear in Phys. Reports.Google Scholar
  5. S. Ferrara, Supersymmetry and unification of particle interactions, to appear in Proc. “Ettore Majorana” Int. School of Subnuclear Physics; 20th Course: Gauge Interactions — Theory and Experiment, Erice, A. Zichichi, ed., Plenum Press, Inc., New York (1982).Google Scholar
  6. 2.
    E. Gildener and S. Weinberg, Phys. Rev., D13: 3333 (1976).Google Scholar
  7. E. Gildener, Phys. Rev., D14: 1667 (1976).Google Scholar
  8. L. Maiani, Proc. Summer School of Gif-sur-Yvette, 1980, IN2P3, Paris, 1980, p.3.Google Scholar
  9. M. Veltman, Acta Phys. Pol., B12: 437 (1981).Google Scholar
  10. E. Witten, Nucl. Phys., B188: 513 (1981).CrossRefGoogle Scholar
  11. 3.
    S. Ferrara, Int. Europhysics Conf. on High-Energy Physics, Brighton, 1983Google Scholar
  12. J. Guy and C. Costain, eds., Rutherford Appleton Laboratory, Chilton, Didcot, U.K., p.522. P. Fayet, ibid., p.33.Google Scholar
  13. D. V. Nanopoulos, ibid., p.38.Google Scholar
  14. R. Barbieri, Univ. Pisa preprint (1983), in Proc. Int. Symp. on Lepton and Photon Interactions at High Energies, Cornell, to be published, 1983.Google Scholar
  15. J. Ellis, CERN preprint TH 3718 (1983), in Proc. Int. Symp. on Lepton and Photon Interactions of High Energies, Cornell, to be published, 1983.Google Scholar
  16. 4.
    D. V. Volkov and V. A. Soroka, JETP Letters, 18: 312 (1973).Google Scholar
  17. S. Deser and B. Zumino, Phys. Rev. Lett., 38: 1433 (1977).CrossRefGoogle Scholar
  18. 5.
    E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello, and P. Van Nieuwenhuizen, Phys. Lett., 79B: 231 (1978)Google Scholar
  19. B. Julia, J. Scherk, S. Ferrara, L. Girardello, and P. Van Nieuwenhuizen —and Nucl. Phys., B147: 105 (1979).CrossRefGoogle Scholar
  20. E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Phys. Lett., 116B: 231 (1982)Google Scholar
  21. S. Ferrara, L. Girardello and A. Van Proeyen, —and Nucl. Phys., B212: 413 (1983).CrossRefGoogle Scholar
  22. 6.
    J. Bagger and E. Witten, Phys. Lett., 115B: 202 (1982).Google Scholar
  23. J. Bagger, Nucl. Phys., B211: 302 (1982).Google Scholar
  24. 7.
    J. Polony, Budapest preprint KFKI-1977 (93) (unpublished).Google Scholar
  25. 8.
    R. Barbieri, S. Ferrara and C. A. Savoy, Phys. Lett., 119B: 343 (1982).Google Scholar
  26. R. Arnowitt, A. Chamseddine and P. Nath, Phys. Rev. Lett., 49: 970 (1982).CrossRefGoogle Scholar
  27. H. P. Nilles, M. Srednicki and D. Wyler, Phys. Lett., 120B: 346 (1983).Google Scholar
  28. E. Cremmer, P. Fayet and L. Girardello, Phys. Lett., 122B: 41 (1983)Google Scholar
  29. L. J. Hall, J. Lykken and S. Weinberg, Phys. Rev., D27: 2359 (1983).Google Scholar
  30. S. K. Soni and H. A. Weldon, Phys. Lett., 126B: 215 (1983).Google Scholar
  31. 9.
    E. Cremmer, S. Ferrara, C. Kounnas and D. V. Nanopoulos, Phys. Lett., 133B: 61 (1983).Google Scholar
  32. 10.
    N. Chang, S. Ouvry and X. Wu, Phys. Rev. Lett., 51: 327 (1983).CrossRefGoogle Scholar
  33. 11.
    J. Ellis, A. B. Lahanas, D. V. Nanopoulos and K. Tamvakis, Phys. Lett., 134B: 429 (1984).Google Scholar
  34. J. Ellis, C. Kounnas and D. V. Nanopoulos, CERN preprints TH.3768 (1983), TH.3824 (1984) and TH.3848 (1984).Google Scholar
  35. 12.
    S. Ferrara and A. Van Proeyen, Phys. Lett., 138B: 77 (1984).Google Scholar
  36. 13.
    M. Grisaru, M. Rocek and A. Karlhede, Phys. Lett., 120B: 110 (1983).Google Scholar
  37. 14.
    E. Cremmer, S. Ferrara and J. Scherk, Phys. Lett., 74B: 61 (1978).Google Scholar
  38. 15.
    N. Dragon, M. G. Schmidt and U. Ellwanger, Heidelberg preprint, HD-THEP-84-10 (1984).Google Scholar
  39. 16.
    S. Ferrara and P. Van Nieuwenhuizen, Phys. Rev. Lett., 37: 1669 (1976).CrossRefGoogle Scholar
  40. 17.
    D. Z. Freedman and A. Das, Nucl. Phys., B120: 221 (1977).CrossRefGoogle Scholar
  41. E. S. Fradkin and M. A. Vasiliev, Lebedev Institute preprint 197 (1976).Google Scholar
  42. 18.
    B. de Wit, P. C. Lauwers, R. Philippe and A. Van Proeyen, Phys. Lett., 135B: 295 (1984).Google Scholar
  43. 19.
    E. Cremmer and B. Julia, Phys. Lett., 80B: 48 (1978)Google Scholar
  44. B. Julia, —and Nucl. Phys., B159: 141 (1979).CrossRefGoogle Scholar
  45. E. Cremmer, in: “Superspace and Supergravity,” S. W. Hawking and M. Rocek, eds., Cambridge University Press, Cambridge, p.267 (1981).Google Scholar
  46. 20.
    P. H. Dondi and M. Sohnius, Nucl. Phys., B81: 317 (1974).CrossRefGoogle Scholar
  47. R. J. Firth and O. J. Jenkins, Nucl. Phys., B85: 525 (1975).CrossRefGoogle Scholar
  48. R. Grimm, M. Sohnius and J. Wess, Nucl. Phys., B133: 275 (1978).CrossRefGoogle Scholar
  49. 21.
    P. Fayet, Nucl. Phys., B113: 135 (1976), and B149: 137 (1979).CrossRefGoogle Scholar
  50. 22.
    S. Ferrara and C. A. Savoy, Supergravity’ 81, S. Ferrara and J. G. Taylor, eds., Cambridge University Press, Cambridge, p.47 (1982).Google Scholar
  51. 23.
    J. P. Derendinger, S. Ferrara and A. Masiero, CERN preprint TH.3854 (1984), Phys. Lett., B to appear.Google Scholar
  52. 24.
    B. de Wit, P. G. Lauwers, R. Philippe, S. Q. Su and A. Van Proeyen, Phys. Lett., 134B: 37 (1984).Google Scholar
  53. 25.
    P. Breitenlohner and M. Sohnius, Nucl. Phys., B187: 409 (1981).CrossRefGoogle Scholar
  54. 26.
    J. Bagger and E. Witten, Nucl. Phys., B222: l (1983).Google Scholar
  55. 27.
    S. Ferrara and P. van Nieuwenhuizen, Phys. Lett., 127B: 70 (1983).Google Scholar
  56. 28.
    S. Cecotti, L. Girardello and M. Porrati, Univ. of Pisa preprint (1984).Google Scholar
  57. 29.
    B. de Wit and A. Van Proeyen, preprint NIKHEF-H/84-4 (1984).Google Scholar
  58. 30.
    J. P. Derendinger, S. Ferrara, A. Masiero and A. Van Proeyen, CERN preprint TH.3813 (1984), Phys. Lett., B to appear.Google Scholar
  59. 31.
    E. Cremmer, J. P. Derendinger, B. de Wit, S. Ferrara, L. Girardello, C. Kounnas and A. Van Proeyen, Ecole Normale Superiéure preprint in preparation.Google Scholar
  60. 32.
    J. P. Derendinger, S. Ferrara, A. Masiero and A. Van Proeyen, Phys. Lett., 136B: 354 (1984).Google Scholar
  61. 33.
    P. Breitenlohner and D. Z. Freedman, Phys. Lett., 115B: 197 (1982)Google Scholar
  62. D. Z. Freedman, — Ann. Phys., 144: 249 (1982).CrossRefGoogle Scholar
  63. 34.
    M. Günaydin, G. Sierra and P. K. Townsend, Ecole Normale Superiéure, preprint LPTENS 83/32 (1983), to appear in Nucl. Phys., B. M. Günaydin, G. Sierra and P. K. Townsend, Cambridge preprint (1984).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • S. Ferrara
    • 1
  1. 1.CERNGenevaSwitzerland

Personalised recommendations