Advertisement

Lattice Calculations in Gauge Theory

  • Claudio Rebbi
Part of the The Subnuclear Series book series (SUS, volume 21)

Abstract

In 1975 Kenneth Wilson gave in Erice a series of lectures1, where he showed how the lattice regularization of quantum gauge theories could provide a clue to the understanding of strong coupling phenomena and, ultimately, of hadronic dynamics. The expectations raised by Wilson’s pioneering work1–2 have been largely fulfilled. The lattice formulation, coupled to powerful numerical techniques, has allowed the derivation of a variety of important results, mainly for the theory of strong interactions (Quantum Chromo Dynamics or QCD), which could not have been attained by more conventional methods relying on perturbative expansions. We are now at a stage where calculations of the spectrum of hadrons, entirely from first principles, are being performed. While the outcomes of different investigations sometimes reveal discrepancies, a consequence of current computational limitations, the overall trend of the results is very encouraging. It appears likely that, with computer developments lying just ahead of us and, undoubtedly, with refinements in our numerical techniques, within a few years we shall be able to calculate the properties of QCD much as it is possible to investigate atomic physics starting from the Schrödinger equation.

Keywords

Gauge Theory Gauge Group Monte Carlo Lattice Spacing Chiral Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Wilson, in: New Phenomena in Subnuclear Physics, ed. A. Zichichi (Plenum Press, N.Y. 1977).Google Scholar
  2. 2.
    K. Wilson, Phys. Rev. D10 (1974) 2445.Google Scholar
  3. 3.
    M. Creutz, L. Jacobs and C. Rebbi, Phys. Reports 23 (1975) 1331.Google Scholar
  4. 4.
    Lattice Gauge Theories and Monte Carlo Simulations, ed. C. Rebbi, World Scientific, Singapore (1983).Google Scholar
  5. 5.
    E. Pietarinen, Nucl. Phys. B190 [FS3] (1981) 349CrossRefGoogle Scholar
  6. M. Creutz and K.J.M. Moriarty, Phys. Rev. D26 (1982) 2166.Google Scholar
  7. 6.
    J.M. Drouffe and J.B. Zuber, Phys. Reports, to be published.Google Scholar
  8. 7.
    C. Rebbi, Phys. Rev. D21 (1980) 3350.Google Scholar
  9. 8.
    D. Petcher and D. Weingarten, Phys. Rev. D22 (1980) 2465.Google Scholar
  10. 9.
    G. Bhanot and C. Rebbi, Nucl. Phys. B180 (1981) 469.CrossRefGoogle Scholar
  11. 10.
    G. Bhanot and C. Rebbi, Phys. Rev. D24 (1981) 3319.Google Scholar
  12. 11.
    J. Stack, Phys. Rev. D27 (1983) 412.Google Scholar
  13. 12.
    M. Creutz, Phys. Rev. Lett. 45 (1980) 313.CrossRefGoogle Scholar
  14. 13.
    C.B. Lang and C. Rebbi, Phys. Lett. 115B (1982) 137.Google Scholar
  15. 14.
    C.B. Lang, C. Rebbi, P. Salomonson and B.S. Skagerstam, Phys. Lett. 101B (1981) 173Google Scholar
  16. C. Rebbi, P. Salomonson and B.S. Skagerstam, — Phys. Rev. D26 (1982) 2028.Google Scholar
  17. 15.
    K.H. Mütter and K. Schilling, Phys. Lett. 121B (1983) 267.Google Scholar
  18. 16.
    R.V. Gavai, F. Karsch, H. Satz, Nucl. Phys. B220 (1983) 223.CrossRefGoogle Scholar
  19. 17.
    D. Barkai, K. Moriarty, C. Rebbi, BNL preprint, (1983).Google Scholar
  20. 18.
    B. Berg, A. Billoire and C. Rebbi, Ann. of Phys. 142 (1982) 185CrossRefGoogle Scholar
  21. M. Falcioni et al., Phys. Lett. 110B (1982) 295Google Scholar
  22. K. Ishikawa, G. Schierholz and M. Teper, Phys. Lett. 110B (1982) 399Google Scholar
  23. B. Berg and A. Billoire, Phys. Lett. 113B (1982) 65.Google Scholar
  24. 19.
    R. Blankenbeckler, J. Hirsch, D. Scalapino and R. Sugar, Phys. Rev. Lett. 47 (1982) 1628.Google Scholar
  25. 20.
    E. Marinari, G. Parisi and C. Rebbi, Nucl. Phys. B190 (1981) 266.Google Scholar
  26. 21.
    D. Weingarten, Phys. Lett. 109B (1982) 57 and Nucl. Phys. B215 [FS7] (1983) 1Google Scholar
  27. 22.
    H. Hamber and G. Parisi, Phys. Rev. Lett. 47 (1982) 1792CrossRefGoogle Scholar
  28. G. Parisi —, Phys. Rev. D28 (1983) 247.Google Scholar
  29. 23.
    F. Fucito, G. Martinelli, C. Omero, G. Parisi, R. Petronzio and F. Rapuano, Nucl. Phys. B210 [FS6] (1982) 407.CrossRefGoogle Scholar
  30. 24.
    G. Martinelli, C. Omero, G. Parisi and R. Petronzio, Phys. Lett. 117B (1982) 434.Google Scholar
  31. 25.
    A. Hasenfratz, P. Hasenfratz, C.B. Lang and Z. Kunszt, Phys. Lett. 117B (1982) 81.Google Scholar
  32. 26.
    C. Bernard, T. Draper, K. Olynyk, Phys. Rev. D27 (1983) 227.Google Scholar
  33. 27.
    R. Gupta and A. Patel, Caltech preprint CALT-68-966 (1982).Google Scholar
  34. 28.
    H. Lipps, G. Martinelli, R. Petronzio and F. Rapuano, CERN preprint TH.3548 (1983).Google Scholar
  35. 29.
    K.C. Bowler, G.S. Pawley, D.J. Wallace, E. Marinari and F. Rapuano, Nucl. Phys. B220 (1983) 137.CrossRefGoogle Scholar
  36. 30.
    F. Fucito, E. Marinari, G. Parisi and C. Rebbi, Nucl. Phys. B180 (1981) 369.CrossRefGoogle Scholar
  37. 31.
    S. Otto and M. Randeria, Nucl. Phys. B220 (1983) 479.CrossRefGoogle Scholar
  38. 32.
    A.N. Burkitt and R.D Kenway, Edinburgh Univ. preprint (1983).Google Scholar
  39. 33.
    H. Hamber, E. Marinari, G. Parisi and C. Rebbi, Phys. Lett. 124B (1983) 99.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Claudio Rebbi
    • 1
  1. 1.Physics DepartmentBrookhaven National Laboratory UptonUSA

Personalised recommendations