Advertisement

QCD at the Collider

  • G. Altarelli
Part of the The Subnuclear Series book series (SUS, volume 21)

Abstract

Although QCD1 imposes itself as the only theory of strong interactions within reach of the weapons of conventional quantum field theory, yet it is still the least established sector of the standard model. Testing QCD is, in fact, more difficult than testing the electroweak sector. In the latter domain the theory is more explicit because perturbation theory can always be applied. Besides that, the leptons and the weak gauge bosons are at the same time the fields in the Lagrangian and the particles in our detectors. On the other hand, QCD is the theory of quarks and gluons while only hadrons are observable; also, perturbation theory can only be applied in that particular domain of the strong interactions where approximate freedom, which is only asymptotic, can be reached.

Keywords

Transverse Momentum Deep Inelastic Scattering Parton Density Gluon Density Gluon Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a recent review, see, for example G. Altarelli, Phys. Reports 81: 1 (1982).CrossRefGoogle Scholar
  2. 2.
    UA1 Collaboration: G. Arnison et al., Phys. Lett. 123B: 115 (1983)Google Scholar
  3. UA2 Collaboration: M. Banner et al., Phys. Lett. 118B: 203 (1982).Google Scholar
  4. 3.
    B.L. Combridge, J. Kripfganz and J. Ranft, Phys. Lett. 70B: 234 (1977)Google Scholar
  5. R. Horgan and M. Jacob, Nucl. Phys. B179: 441 (1981).CrossRefGoogle Scholar
  6. 4.
    N.G. Antoniou et al., Phys. Lett. 128B: 257 (1983).Google Scholar
  7. 5.
    W. Furmanski and H. Kowalski, Nucl. Phys. B244: 523 (1983).CrossRefGoogle Scholar
  8. 6.
    Z. Kunszt and E. Pietarinen, CERN preprint TH.3584 (1983).Google Scholar
  9. 7.
    T. Akesson et al., Phys. Lett. 118B: 185 (1982); 121B: 133 (1983); 128B: 354 (1983)Google Scholar
  10. A.L.S. De Angelis et al., Phys. Lett. 126B: 132 (1983).Google Scholar
  11. 8.
    R.K. Ellis, M.A. Furman, H.E. Haber and I. Hinchliffe, Nucl. Phys. B173: 397 (1980)CrossRefGoogle Scholar
  12. M.A. Furman, Columbia Univ. preprint CU-TP-182 (1982).Google Scholar
  13. 9.
    W. Bartel, Proceedings of the EPS Conference, Brighton, 1983.Google Scholar
  14. 10.
    UA2 Collaboration: P. Bagnaia et al., CERN preprint EP/83-94 (1983).Google Scholar
  15. 11.
    See, for example, K. Konishi, A. Ukawa and G. Veneziano, Nucl. Phys. B157: 45 (1979).CrossRefGoogle Scholar
  16. 12.
    J. Kripfganz and A. Schiller, Phys. Lett. 79B: 317 (1978)Google Scholar
  17. A. Schiller, J. Phys. G5: 1329 (1979)Google Scholar
  18. C.J. Maxwell, Nucl. Phys. B149: 61 (1979)Google Scholar
  19. T. Gottschalk and D. Sivers, Phys. Rev. D21: 102 (1980)Google Scholar
  20. Z. Kunszt and E. Pietarinen, Nucl. Phys. B164: 45 (1980).CrossRefGoogle Scholar
  21. 13.
    F.A. Berends et al., Phys. Lett. 103B: 124 (1981).Google Scholar
  22. 14.
    UA5 Collaboration: K. Alpgard et al., Phys. Lett. 115B: 71 (1982).Google Scholar
  23. 15.
    A.H. Mueller, Phys. Lett. 104B: 616 (1981)Google Scholar
  24. A. Bassetto et al., Univ. of Florence preprint 82/11 (1982)Google Scholar
  25. see also A. Bassetto et al., Nucl. Phys. B163: 477 (1980)CrossRefGoogle Scholar
  26. W. Furmanski et al., Nucl. Phys. B155: 253 (1979).CrossRefGoogle Scholar
  27. 16.
    A.H. Mueller, Columbia Univ. preprint CU-TP-247 (1982); see also M. Ciafaloni, Proceedings of the EPS Conference, Brighton, 1983.Google Scholar
  28. 17.
    R.V. Gavai and H. Satz, Phys. Lett. 112B: 413 (1982).Google Scholar
  29. 18.
    F. Hayot and G. Sterman, Stony Brook preprint ITP-SB-82-60 (1982)Google Scholar
  30. G. Pancheri and Y. Srivastava, Phys. Lett. 128B: 433 (1983).Google Scholar
  31. 19.
    UA1 Collaboration: G. Arnison et al., Phys. Lett. 122B: 103 (1983)Google Scholar
  32. Phys. Lett. 126B: 398 (1983)Google Scholar
  33. UA2 Collaboration: M. Banner et al., Phys. Lett. 122B: 476 (1983)Google Scholar
  34. Phys. Lett. 129B: 130 (1983).Google Scholar
  35. 20.
    G. Parisi and R. Petronzio, Nucl. Phys. B154: 427 (1979)CrossRefGoogle Scholar
  36. [see also Y.L. Dokshitzer, D.L. D’yakonov and S.I. Troyan, Phys. Lett. 78B: 290 (1978)Google Scholar
  37. D.L. D’yakonov and S.I. Troyan, —Phys. Reports 58: 269 (1980)]CrossRefGoogle Scholar
  38. J.C. Collins and D.E. Soper, Oregon Univ. preprint OITS-155 (1981).Google Scholar
  39. 21.
    G. Altarelli, R.K. Ellis and G. Martinelli, Nucl. Phys. B143: 521 (1978), (E) B146: 544 (1978)CrossRefGoogle Scholar
  40. R.K. Ellis and G. Martinelli, — Nucl. Phys. B157: 461 (1979)CrossRefGoogle Scholar
  41. J. Kubar-André and F. Paige, Phys. Rev. D19: 221 (1979).Google Scholar
  42. 22.
    R.K. Ellis, G. Martinelli and R. Petronzio, Nucl. Phys. B211: 106 (1983).CrossRefGoogle Scholar
  43. 23.
    P. Chiappetta and M. Greco, Nucl. Phys. B199: 77 (1982)CrossRefGoogle Scholar
  44. P. Aurenche and R. Kinnunen, LAPP preprint TH-78 (1983)Google Scholar
  45. G. Pancheri and Y.N. Srivastava, Phys. Lett. 128B: 235 (1983)Google Scholar
  46. F. Halzen, A.D. Martin and D.M. Scott, Phys. Rev. D25: 754 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • G. Altarelli
    • 1
    • 2
  1. 1.Università di Roma ISezione di RomaItaly
  2. 2.CernGenevaSwitzerland

Personalised recommendations