Skip to main content

Physics Results of the UAI Collaboration at the Cern Proton-Antiproton Collider

  • Chapter
  • 94 Accesses

Part of the book series: The Subnuclear Series ((SUS,volume 21))

Abstract

The conversion of the SPS into a p̄p collider[1] and the associated physics programs of the UA1 collaboration were motivated by three very specific physics goals, namely:

  1. (i)

    the observation of jets and a detailed comparison with predictions of QCD.

  2. (ii)

    The discovery of the charged Intermediate Vector Boson (IVB) W± in the electron and muon decay modes and the measurement of its fundamental charge asymmetry in the decay.

  3. (iii)

    The discovery of the neutral IVB, Z° both in the electron and muon decay channels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Rubbia, P. Mclntyre, and D. Cline, Study Group, Design study of a Proton-Antiproton Colliding Beam Facility, CERN/PS/AA 78-3, reprinted in Proc. Workshop on Producing High-Luminosity, High Energy Proton-Antiproton Collisions (Berkely, 1978), report LBL-7574, UC34, p.189 (1978); Proc. Inter. Neutrino Conf. (Aachen, 1976) (Vieweg, Braunschweig, 1977) p.683.

    Google Scholar 

  2. The Staff of the CERN “Proton-Antiproton Project,” Phys. Lett., 107B: 306 (1981).

    Google Scholar 

  3. UA1 Proposal: A 4π solid-angle detector for the SPS used as a proton-antiproton collider at a centre-of-mass energy of 540 GeV, CERN/SPSC 78-06 (1978)

    Google Scholar 

  4. M. Barranco Luque, Nucl. Instrum. Methods, 176: 175 (1980)

    Article  Google Scholar 

  5. M. Calvetti, Nucl. Instrum. Methods, 176: 255 (1980)

    Article  Google Scholar 

  6. K. Eggert, Nucl. Instrum. Methods, 176: 217, 233 (1980)

    Article  Google Scholar 

  7. A. Astbury, Phys. Scr., 23: 397 (1981); UA1 Collaboration, the UA1 detector (presented by J. Timmer), in: “Proc. 18th Rencontre de Moriond, Antiproton-Proton Physics and the W discovery,” J. Tran Thanh Van, ed., p.593 (1983).

    Article  Google Scholar 

  8. UA1 Collaboration, G. Arnison, Phys. Lett., 123B: 115 (1983).

    Google Scholar 

  9. UA1 Collaboration, Transverse Energy Distributions in the Central Calorimeters, preprint CERN EP/82-122 (1982).

    Google Scholar 

  10. M. J. Corden, et al., Physica Scripta, 25: 468 (1982); C. Cochet, et al., UA1 Tech. Note TN 82-40.

    Google Scholar 

  11. G. Arnison, et al., Phys. Lett., 107B: 320 (1981); 123B: 108 (1983).

    Google Scholar 

  12. G. Wolf, DESY Report EP/82-122 (1982).

    Google Scholar 

  13. F. E. Paige and S. D. Protopopescu, ISAJET, BNL 31987.

    Google Scholar 

  14. M. Delia Negra, Physica Scripta, 25: 468 (1982)

    Google Scholar 

  15. R. K. Bock, et al., Nucl. Inst. Meth., 186: 533 (1981).

    Article  Google Scholar 

  16. Z. Kunszt and E. Pietarinen, CERN preprint TH 3584 (1983).

    Google Scholar 

  17. K. Kunszt and E. Pietarinen, Nucl. Phys., B164: 45 (1980)

    Article  Google Scholar 

  18. T. Gottschalk and D. Sivers, Phys. Rev., D21: 102 (1980)

    Google Scholar 

  19. F. Berends, Phys. Lett., 103B: 124 (1981).

    Google Scholar 

  20. R. Brandelik, Phys. Lett., 114B: 65 (1982) [16].

    Google Scholar 

  21. UA1 Collaboration, Jet fragmentation at the SPS pp collider — UA1 experiment (presented by V. Vuillemin), in: “Proc. 18th Rencontre de Moriond, Antiproton-Proton Physics and the W discovery 1983,” J. Tran Thanh Van, ed., p.309.

    Google Scholar 

  22. G. Arnison, et al., Phys. Lett., 118B: 173 (1982).

    Google Scholar 

  23. B. Combridge, et al., Phys. Lett., 70B: 234 (1977).

    Google Scholar 

  24. B. Combridge and C. Maxwell, preprint RL-83-095 (1983).

    Google Scholar 

  25. UA1 Collaboration, G. Arnison, et al., Phys. Lett., 132B: 214 (1983).

    Google Scholar 

  26. F. Berends, et al., Phys. Lett., 103B: 124 (1981).

    Google Scholar 

  27. J. C. Collins and D. E. Soper, Phys. Rev., D16: 2219 (1977).

    Google Scholar 

  28. D. Drijard, et al., Phys. Lett., 121B: 433 (1983).

    Google Scholar 

  29. R. K. Ellis, et al., Nucl. Phys., B173: 397 (1980).

    Article  Google Scholar 

  30. N. G. Antoniou, et al., Phys. Lett., 128B: 257 (1983).

    Google Scholar 

  31. H. Abramowicz, et al., Z. Phys., C12: 289 (1982).

    Google Scholar 

  32. G. Arnison, et al., Phys. Lett., 122B: 103 (1983).

    Google Scholar 

  33. G. Arnison, et al., Phys. Lett., 129B: 273 (1983).

    Google Scholar 

  34. UA2 Collaboration in Proceeding of the International Europhysics Conference, Brighton, July 1983, p.472.

    Google Scholar 

  35. A. Nakamura, G. Pancheri, and Y. Srivastava, Frascati preprint LFN-83/43 (R) (June 1983).

    Google Scholar 

  36. P. Aurenche and J. Lindfors, Nucl. Phys., B185: 274 (1981).

    Article  Google Scholar 

  37. F. E. Paige and S. D. Protopopescu, ISAJET program, BNL 29777 (1981). All cross-sections are calculated in the leading log approximation assuming SU(2) x U(l).

    Google Scholar 

  38. F. Berends, et al., Nucl. Phys., B202: 63 (1982), and private communications.

    Article  Google Scholar 

  39. M. Jacob, to be published. We thank Professor M. Jacob for very helpful comments on the subject.

    Google Scholar 

  40. K. Eggert, et al., Nucl. Instrum. Methods, 176: 217, 233 (1980).

    Article  Google Scholar 

  41. For more detailed information, see for example: UA1 Collaboration, Search for Isolated Large Transverse Energy muons at √s=540 GeV, in Proc. 18th Recontre de Moriond on Antiproton-Proton Physics, La Plagne 1983 (Editions Frontières, Gif-sur-Yvette, 1983), p.431.

    Google Scholar 

  42. G. Arnison, et al., Phys. Lett., 118B: 167 (1982).

    Google Scholar 

  43. Calculation based on: M. Banner, et al., Phys. Lett., 122B: 322 (1983).

    Google Scholar 

  44. In the maximum likelihood fit, the measured quantities of each event are compared with computed distribution functions, smeared with experimental errors. A Breit-Wigner form is assumed for the W mass (with a width (FWHM) of 3 GeV/c2), and Gaussian distributions are used for the transverse and longitudinal momenta of the W (with r. m. s. widths of 7.5 GeV/c and 67.5 GeV/c, respectively). In the W centre of mass, the angle θ* of the emitted positive (negative) lepton with respect to the outgoing antiproton (proton) direction is generated according to a distribution in cosθ* of (l+cosθ*)2 as expected for V(±A) coupling.

    Google Scholar 

  45. J. T. Carrol, S. Cittolin, M. Demoulin, A. Fucci, B. Martin, A. Norton, J. P. Porte, P. Ross, and K. M. Storr, Data Acquisition using the 168E, Paper presented at the Three-Day In-Depth Review on the Impact of Specialized Processors in Elementary Particle Physics, Padua 1983, ed. Istituto Nazionale di Fisica Nucleare, Padova, p.47 (1983).

    Google Scholar 

  46. Electron-pion discrimination has been measured in a test beam in the full energy range and angles of interest. The muon tracks have the following probabilities: i) no interaction: 2 x 10-5 (4 x 10-5); ii) interaction but undetected by the calorimeter and geometrical cuts: 10-4 (4 x 10-4); iii) decay: 10-3 (0.7 × 10−3).

    Google Scholar 

  47. S. D. Drell and T. M. Yan, Phys. Rev. Lett., 25: 316 (1970)

    Article  Google Scholar 

  48. F. Halzen and D. H. Scott, Phys. Rev., D18: 3378 (1978).

    Google Scholar 

  49. See also ref.6; S. Pakvasa, M. Dechantsreiter, F. Halzen and D. M. Scott, Phys. Rev., D20: 2862 (1979).

    Google Scholar 

  50. R. Kinnunen, Proc. Proton-Antiproton Collider Physics Workshop, Madison, 1981 (univ. Wisconsin, Madison, 1982); R. W. Brown and K. O. Mikaelian, Phys. Rev., D19: 922 (1979).

    Google Scholar 

  51. T. G. Gaisser, F. Halzen, and E. A. Paschos, Phys. Rev., D15: 2572 (1977)

    Google Scholar 

  52. R. Baier and R. Rückl, Phys. Lett., 102B: 364 (1981)

    Google Scholar 

  53. F. Halzen, Proc. 21st Int. Conf. on High Energy Physics, Paris, 1982 (J. Phys. (France), No. 12 t 43: (1982)), p. C3-381; F. D. Jackson, S. Olsen, and S. H. H. Tye, Proc. AIP Dept. of Particles and Fields Summer Study on Elementary Particle Physics and Future Facilities, Snowmass, Colorado, 1982 (AIP, New York, 1983), p.175.

    Google Scholar 

  54. J. E. Kim, Rev. Mod. Phys., 53: 211 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Rubbia, C. (1985). Physics Results of the UAI Collaboration at the Cern Proton-Antiproton Collider. In: Zichichi, A. (eds) How Far Are We from the Gauge Forces. The Subnuclear Series, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5086-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5086-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5088-0

  • Online ISBN: 978-1-4684-5086-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics