Advertisement

Physics Results of the UAI Collaboration at the Cern Proton-Antiproton Collider

  • Carlo Rubbia
Part of the The Subnuclear Series book series (SUS, volume 21)

Abstract

The conversion of the SPS into a p̄p collider[1] and the associated physics programs of the UA1 collaboration were motivated by three very specific physics goals, namely:
  1. (i)

    the observation of jets and a detailed comparison with predictions of QCD.

     
  2. (ii)

    The discovery of the charged Intermediate Vector Boson (IVB) W± in the electron and muon decay modes and the measurement of its fundamental charge asymmetry in the decay.

     
  3. (iii)

    The discovery of the neutral IVB, Z° both in the electron and muon decay channels.

     

Keywords

Transverse Momentum Transverse Energy Central Detector Muon Track Minimum Bias Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Rubbia, P. Mclntyre, and D. Cline, Study Group, Design study of a Proton-Antiproton Colliding Beam Facility, CERN/PS/AA 78-3, reprinted in Proc. Workshop on Producing High-Luminosity, High Energy Proton-Antiproton Collisions (Berkely, 1978), report LBL-7574, UC34, p.189 (1978); Proc. Inter. Neutrino Conf. (Aachen, 1976) (Vieweg, Braunschweig, 1977) p.683.Google Scholar
  2. 2.
    The Staff of the CERN “Proton-Antiproton Project,” Phys. Lett., 107B: 306 (1981).Google Scholar
  3. 3.
    UA1 Proposal: A 4π solid-angle detector for the SPS used as a proton-antiproton collider at a centre-of-mass energy of 540 GeV, CERN/SPSC 78-06 (1978)Google Scholar
  4. M. Barranco Luque, Nucl. Instrum. Methods, 176: 175 (1980)CrossRefGoogle Scholar
  5. M. Calvetti, Nucl. Instrum. Methods, 176: 255 (1980)CrossRefGoogle Scholar
  6. K. Eggert, Nucl. Instrum. Methods, 176: 217, 233 (1980)CrossRefGoogle Scholar
  7. A. Astbury, Phys. Scr., 23: 397 (1981); UA1 Collaboration, the UA1 detector (presented by J. Timmer), in: “Proc. 18th Rencontre de Moriond, Antiproton-Proton Physics and the W discovery,” J. Tran Thanh Van, ed., p.593 (1983).CrossRefGoogle Scholar
  8. 4.
    UA1 Collaboration, G. Arnison, Phys. Lett., 123B: 115 (1983).Google Scholar
  9. 5.
    UA1 Collaboration, Transverse Energy Distributions in the Central Calorimeters, preprint CERN EP/82-122 (1982).Google Scholar
  10. 6.
    M. J. Corden, et al., Physica Scripta, 25: 468 (1982); C. Cochet, et al., UA1 Tech. Note TN 82-40.Google Scholar
  11. 7.
    G. Arnison, et al., Phys. Lett., 107B: 320 (1981); 123B: 108 (1983).Google Scholar
  12. 8.
    G. Wolf, DESY Report EP/82-122 (1982).Google Scholar
  13. 9.
    F. E. Paige and S. D. Protopopescu, ISAJET, BNL 31987.Google Scholar
  14. 10.
    M. Delia Negra, Physica Scripta, 25: 468 (1982)Google Scholar
  15. R. K. Bock, et al., Nucl. Inst. Meth., 186: 533 (1981).CrossRefGoogle Scholar
  16. 11.
    Z. Kunszt and E. Pietarinen, CERN preprint TH 3584 (1983).Google Scholar
  17. 12.
    K. Kunszt and E. Pietarinen, Nucl. Phys., B164: 45 (1980)CrossRefGoogle Scholar
  18. T. Gottschalk and D. Sivers, Phys. Rev., D21: 102 (1980)Google Scholar
  19. F. Berends, Phys. Lett., 103B: 124 (1981).Google Scholar
  20. 13.
    R. Brandelik, Phys. Lett., 114B: 65 (1982) [16].Google Scholar
  21. 14.
    UA1 Collaboration, Jet fragmentation at the SPS pp collider — UA1 experiment (presented by V. Vuillemin), in: “Proc. 18th Rencontre de Moriond, Antiproton-Proton Physics and the W discovery 1983,” J. Tran Thanh Van, ed., p.309.Google Scholar
  22. 15.
    G. Arnison, et al., Phys. Lett., 118B: 173 (1982).Google Scholar
  23. 16.
    B. Combridge, et al., Phys. Lett., 70B: 234 (1977).Google Scholar
  24. 17.
    B. Combridge and C. Maxwell, preprint RL-83-095 (1983).Google Scholar
  25. 18.
    UA1 Collaboration, G. Arnison, et al., Phys. Lett., 132B: 214 (1983).Google Scholar
  26. 19.
    F. Berends, et al., Phys. Lett., 103B: 124 (1981).Google Scholar
  27. 20.
    J. C. Collins and D. E. Soper, Phys. Rev., D16: 2219 (1977).Google Scholar
  28. 21.
    D. Drijard, et al., Phys. Lett., 121B: 433 (1983).Google Scholar
  29. 22.
    R. K. Ellis, et al., Nucl. Phys., B173: 397 (1980).CrossRefGoogle Scholar
  30. 23.
    N. G. Antoniou, et al., Phys. Lett., 128B: 257 (1983).Google Scholar
  31. 24.
    H. Abramowicz, et al., Z. Phys., C12: 289 (1982).Google Scholar
  32. 25.
    G. Arnison, et al., Phys. Lett., 122B: 103 (1983).Google Scholar
  33. 26.
    G. Arnison, et al., Phys. Lett., 129B: 273 (1983).Google Scholar
  34. 27.
    UA2 Collaboration in Proceeding of the International Europhysics Conference, Brighton, July 1983, p.472.Google Scholar
  35. 28.
    A. Nakamura, G. Pancheri, and Y. Srivastava, Frascati preprint LFN-83/43 (R) (June 1983).Google Scholar
  36. 29.
    P. Aurenche and J. Lindfors, Nucl. Phys., B185: 274 (1981).CrossRefGoogle Scholar
  37. 30.
    F. E. Paige and S. D. Protopopescu, ISAJET program, BNL 29777 (1981). All cross-sections are calculated in the leading log approximation assuming SU(2) x U(l).Google Scholar
  38. 31.
    F. Berends, et al., Nucl. Phys., B202: 63 (1982), and private communications.CrossRefGoogle Scholar
  39. 32.
    M. Jacob, to be published. We thank Professor M. Jacob for very helpful comments on the subject.Google Scholar
  40. 33.
    K. Eggert, et al., Nucl. Instrum. Methods, 176: 217, 233 (1980).CrossRefGoogle Scholar
  41. 34.
    For more detailed information, see for example: UA1 Collaboration, Search for Isolated Large Transverse Energy muons at √s=540 GeV, in Proc. 18th Recontre de Moriond on Antiproton-Proton Physics, La Plagne 1983 (Editions Frontières, Gif-sur-Yvette, 1983), p.431.Google Scholar
  42. 35.
    G. Arnison, et al., Phys. Lett., 118B: 167 (1982).Google Scholar
  43. 36.
    Calculation based on: M. Banner, et al., Phys. Lett., 122B: 322 (1983).Google Scholar
  44. 37.
    In the maximum likelihood fit, the measured quantities of each event are compared with computed distribution functions, smeared with experimental errors. A Breit-Wigner form is assumed for the W mass (with a width (FWHM) of 3 GeV/c2), and Gaussian distributions are used for the transverse and longitudinal momenta of the W (with r. m. s. widths of 7.5 GeV/c and 67.5 GeV/c, respectively). In the W centre of mass, the angle θ* of the emitted positive (negative) lepton with respect to the outgoing antiproton (proton) direction is generated according to a distribution in cosθ* of (l+cosθ*)2 as expected for V(±A) coupling.Google Scholar
  45. 38.
    J. T. Carrol, S. Cittolin, M. Demoulin, A. Fucci, B. Martin, A. Norton, J. P. Porte, P. Ross, and K. M. Storr, Data Acquisition using the 168E, Paper presented at the Three-Day In-Depth Review on the Impact of Specialized Processors in Elementary Particle Physics, Padua 1983, ed. Istituto Nazionale di Fisica Nucleare, Padova, p.47 (1983).Google Scholar
  46. 39.
    Electron-pion discrimination has been measured in a test beam in the full energy range and angles of interest. The muon tracks have the following probabilities: i) no interaction: 2 x 10-5 (4 x 10-5); ii) interaction but undetected by the calorimeter and geometrical cuts: 10-4 (4 x 10-4); iii) decay: 10-3 (0.7 × 10−3).Google Scholar
  47. 40.
    S. D. Drell and T. M. Yan, Phys. Rev. Lett., 25: 316 (1970)CrossRefGoogle Scholar
  48. F. Halzen and D. H. Scott, Phys. Rev., D18: 3378 (1978).Google Scholar
  49. See also ref.6; S. Pakvasa, M. Dechantsreiter, F. Halzen and D. M. Scott, Phys. Rev., D20: 2862 (1979).Google Scholar
  50. 41.
    R. Kinnunen, Proc. Proton-Antiproton Collider Physics Workshop, Madison, 1981 (univ. Wisconsin, Madison, 1982); R. W. Brown and K. O. Mikaelian, Phys. Rev., D19: 922 (1979).Google Scholar
  51. 42.
    T. G. Gaisser, F. Halzen, and E. A. Paschos, Phys. Rev., D15: 2572 (1977)Google Scholar
  52. R. Baier and R. Rückl, Phys. Lett., 102B: 364 (1981)Google Scholar
  53. F. Halzen, Proc. 21st Int. Conf. on High Energy Physics, Paris, 1982 (J. Phys. (France), No. 12 t 43: (1982)), p. C3-381; F. D. Jackson, S. Olsen, and S. H. H. Tye, Proc. AIP Dept. of Particles and Fields Summer Study on Elementary Particle Physics and Future Facilities, Snowmass, Colorado, 1982 (AIP, New York, 1983), p.175.Google Scholar
  54. 43.
    J. E. Kim, Rev. Mod. Phys., 53: 211 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Carlo Rubbia
    • 1
  1. 1.CernGenevaSwitzerland

Personalised recommendations