Optical Studies on Ionic Channels in Intact Vertebrate Nerve Terminals

  • Brian M. Salzberg
  • Ana Lia Obaid
  • Harold Gainer
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


Optical techniques for the detection of transmembrane electrical events have found a variety of applications over the past decade because they offer certain advantages over more conventional measurements. Because the membranes of interest are not mechanically violated, the methods may be relatively noninvasive. Spatial resolution is limited only by microscope optics and noise considerations; it is possible to measure changes in membrane potential from regions of a cell having linear dimensions on the order of 1 μm. Temporal resolution is limited by the response time of the probes and by the bandwidth imposed on the measurement, again by noise considerations, and response times faster than any known membrane time constant may be achieved. Because mechanical access is not required, unusual latitude is possible in the choice of preparation, and voltage changes may be monitored in membranes that are otherwise inaccessible. Finally, since no recording electrodes are employed, and the measurement is actually made at a distance from the preparation—in the image plane of an optical apparatus—it is possible to record changes in potential simultaneously from a large number of discrete sites.


Nerve Terminal Optical Signal Giant Axon Optical Recording Transmembrane Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrett, J. N., Magleby, K. L., and Palotta, B. S., 1982, Properties of single calcium activated potassium channels in cultured rat muscle, J. Physiol. (Lond.) 331:211–230.Google Scholar
  2. Blaustein, M. P., and Goldring, J. M., 1975, Membrane potentials in pinched-off presynaptic nerve terminals monitored with a fluorescent probe: Evidence that synaptosomes have potassium diffusion potentials, J. Physiol. (Lond.) 247:589–615.Google Scholar
  3. Brandt, B. L., Hagiwara, S., Kidokoro, Y., and Miyazaki, S., 1976, Action potentials in the rat chromaffin cell and effects of acetylcholine, J. Physiol. (Lond.) 263:417–439.Google Scholar
  4. Bullock, T. H., and Hagiwara, S., 1957, Intracellular recording from the giant synapse of the squid, J. Gen. Physiol. 40:565–577.PubMedCrossRefGoogle Scholar
  5. Cohen, L. B., and Salzberg, B. M., 1978, Optical measurement of membrane potential, Rev. Physiol. Biochem. Pharmacol. 83:33–88.Google Scholar
  6. Cohen, L. B., Salzberg, B. M., Davila, H. V., Ross, W. N., Landowne, D., Waggoner, A. S., and Wang, C.-H., 1974, Changes in axon fluorescence during activity: Molecular probes of membrane potential, J. Membr. Biol. 19:1–36.PubMedCrossRefGoogle Scholar
  7. Conti, F., 1975, Fluorescent probes in nerve membranes, Annu. Rev. Biophys. Bioeng. 4:287–310.PubMedCrossRefGoogle Scholar
  8. Davila, H. V., Salzberg, B. M., Cohen, L. B., and Waggoner, A. S., 1973, A large change in axon fluorescence that provides a promising method for measuring membrane potential, Nature (New Biol) 241:159–160.Google Scholar
  9. Davila, H. V., Cohen, L. B., Salzberg, B. M., and Shrivastav, B. B., 1974, Changes in ANS and TNS fluorescence in giant axons from Loligo, J. Membr. Biol. 15:29–46.PubMedCrossRefGoogle Scholar
  10. Dellman, H. D., 1973, Degeneration and regeneration of neurosecretory systems, Int. Rev. Cytol. 36:215–315.CrossRefGoogle Scholar
  11. Douglas, W. W., 1963, A possible mechanism of neurosecretion-release of vasopressin by depolarization and its dependence on calcium, Nature 197:81–82.CrossRefGoogle Scholar
  12. Douglas, W. W., 1968, Stimulus-secretion coupling. The concept and clues from chromaffin and other cells, Br. J. Pharmacol. 38:451–474.Google Scholar
  13. Douglas, W. W., and Poisner, A. M., 1964, Stimulus secretion coupling in a neurosecretory organ and the role of calcium in the release of vasopressin from the neurohypophysis, J. Physiol. (Lond.) 172:1–18.Google Scholar
  14. Dreifuss, J. J., Kalnins, I., Kelley, J. S., and Ruf, K. B., 1971, Action potentials and the release of neurohypophysial hormones in vitro, J. Physiol. (Lond.) 215:805–817.Google Scholar
  15. Freedman, J. C., and Laris, P. C., 1981, Electrophysiology of cells and organelles: Studies with optical Potentiometrie indicators, Int. Rev. Cytol. Suppl. 12:177–246.PubMedGoogle Scholar
  16. Gerschenfeld, H. M., Tramezzani, J. H., and De Robertis, E., 1960, Ultrastructure and function in neurohypophysis of the toad, Endocrinology 66:741–762.PubMedCrossRefGoogle Scholar
  17. Grinvald, A., and Farber, I. C., 1981, Optical recording of Ca2+ action potentials from growth cones of cultured neurons using a laser microbeam, Science 212:1164–1169.PubMedCrossRefGoogle Scholar
  18. Grinvald, A., Cohen, L. B., Lesher, S., and Boyle, M. B., 1981, Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia, using a 124 element photodiode array, J. Neurophysiol. 45:829–840.PubMedGoogle Scholar
  19. Grinvald, A., Hildesheim, R., Farber, I. C., and Anglister, L., 1982a, Improved fluorescent probes for the measurement of rapid changes in membrane potential, Biophys. J. 39:301–308.PubMedCrossRefGoogle Scholar
  20. Grinvald, A., Manker, A., and Segal, M., 1982b, Visualization of the spread of electrical activity in rat hippocampal slices by voltage-sensitive optical probes, J. Physiol. (Lond.) 333:269–291.Google Scholar
  21. Gupta, R. K., Salzberg, B. M., Grinvald, A., Cohen, L. B., Kamino, K., Lesher, S., Boyle, M. B., Waggoner, A. S., and Wang, C.-H., 1981, Improvements in optical methods for measuring rapid changes in membrane potential, J. Membr. Biol. 58:123–137.PubMedCrossRefGoogle Scholar
  22. Hagiwara, S., and Byerly, L., 1981, Calcium channel, Annu. Rev. Neurosci. 4:69–125.PubMedCrossRefGoogle Scholar
  23. Hodgkin, A. L., 1938, The subthreshold potentials in a crustacean nerve fibre, Proc. R. Soc. Lond. (Biol.) 126:87–121.CrossRefGoogle Scholar
  24. Kamino, K., and Inouye, A., 1978, Evidence for membrane potential changes in isolated synaptic membrane ghosts monitored with a merocyanine dye, Jpn. J. Physiol. 28:225–237.PubMedCrossRefGoogle Scholar
  25. Kamino, K., Hirota, A., and Fujii, S., 1981, Localization of pacemaking activity in early embryonic heart monitored using voltage sensitive dye, Nature 290:595–597.PubMedCrossRefGoogle Scholar
  26. Katz, B., 1969, The Release of Neural Transmitter Substances, Charles C. Thomas, Springfield, Illinois.Google Scholar
  27. Katz, B., and Miledi, R., 1967, A study of synaptic transmission in the absence of nerve impulses, J. Physiol. (Lond.) 192:407–436.Google Scholar
  28. Katz, B., and Miledi, R., 1969, Tetrodotoxin-resistant electrical activity in presynaptic terminals, J. Physiol. (Lond.) 203:459–487.Google Scholar
  29. Kaufmann, R., and Fleckenstein, A., 1965, Ca++-kompetitive elektro-mechanische Entkoppelung durch Ni++- und Co++-Ionen am Warmblütermyokard, Pfluegers Arch. 282:290–297.Google Scholar
  30. Kostyuk, P. G., and Krishtal, O. A., 1977, Separation of sodium and calcium currents in the somatic membrane of mollusc neurons, J. Physiol. (Lond.) 270:545–568.Google Scholar
  31. Llinas, R., and Sugimori, M., 1980a, Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices, J. Physiol. (Lond.) 305:171–195.Google Scholar
  32. Llinas, R., and Sugimori, M., 1980b, Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices, J. Physiol. (Lond.) 305:197–213.Google Scholar
  33. Llinas, R., Steinberg, I. Z., and Walton, K., 1976, Presynaptic calcium currents and their relation to synaptic transmission: Voltage clamp study in squid giant synapse and theoretical model for the calcium gate, Proc. Natl. Acad. Sci. U.S.A. 73:2918–2922.PubMedCrossRefGoogle Scholar
  34. Loew, L. M., and Simpson, L., 1981, Charge shift probes of membrane potential. A probable electrochromic mechanism for ASP probes on a hemispherical lipid bilayer, Biophys. J. 34:353–365.PubMedCrossRefGoogle Scholar
  35. Loew, L. M., Cohen, L. B., Salzberg, B. M., Obaid, A. L., and Bezanilla, F., 1985, Charge shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes in the squid giant axon, Biophys. J. 47:71–77.PubMedCrossRefGoogle Scholar
  36. Meech, R. W., and Strumwasser, F., 1970, Intracellular calcium injection activates potassium conductance in Aplysia nerve cells, Fed. Proc. 29:834.Google Scholar
  37. Nordmann, J. J., 1977, Ultrastructural morphometry of the rat neurohypophysis, J. Anat. 123:213–218.PubMedGoogle Scholar
  38. Obaid, A. L., Orkand, R. K., Gainer, H., and Salzberg, B. M., 1985, Active calcium responses recorded optically from nerve terminals of the frog neurohypophysis, J. Gen. Physiol. 85:481–489.PubMedCrossRefGoogle Scholar
  39. Platt, J. R., 1961, Electrochromism, a possible change in color producible in dyes by an electric field, J. Chem. Phys. 34:862–863.CrossRefGoogle Scholar
  40. Poulain, D. A., and Wakerley, J. B., 1982, Electrophysiology of hypothalamic magnocellular neurons secreting oxytocin and vasopressin, Neuroscience 7:773–808.PubMedCrossRefGoogle Scholar
  41. Rodriguez, E. M., and Dellman, H. D., 1970, Hormonal content and ultrastructure of the disconnected neural lobe of the grass frog (Rana pipiens), Gen. Comp. Endocrinol. 15:272–288.PubMedCrossRefGoogle Scholar
  42. Ross, W. N., Salzberg, B. M., Cohen, L. B., Grinvald, A., Davila, H. V., Waggoner, A. S., and Wang, C.-H., 1977, Changes in absorption, fluorescence, dichroism and birefringence in stained giant axons: Optical measurement of membrane potential, J. Membr. Biol. 33:141–183.PubMedCrossRefGoogle Scholar
  43. Salzberg, B. M., 1983, Optical recording of electrical activity in neurons using molecular probes, in Current Methods in Cellular Neurobiology, Vol. 3: Electrophysiological Techniques (J. L. Barker and J. E. McKelvey, eds.), John Wiley & Sons, New York.Google Scholar
  44. Salzberg, B. M., and Bezanilla, F., 1983, An optical determination of the series resistance in Loligo, J. Gen. Physiol. 82:807–818.PubMedCrossRefGoogle Scholar
  45. Salzberg, B. M., Davila, H. V., Cohen, L. B., and Waggoner, A. S., 1972, A large change in axon fluorescence, potentially useful in the study of simple nervous systems, Biol. Bull. 143:475.Google Scholar
  46. Salzberg, B. M., Cohen, L. B., Ross, W. N., Waggoner, A. S., and Wang, C.-H., 1976, New and more sensitive molecular probes of membrane potential: Simultaneous optical recordings from several cells in the central nervous system of the leech, Biophys. J. 16:23a.Google Scholar
  47. Salzberg, B. M., Grinvald, A., Cohen, L. B., Davila, H. V., and Ross, W. N., 1977, Optical recording of neuronal activity in an invertebrate central nervous system: Simultaneous monitoring of several neurons, J. Neurophysiol. 40:1281–1291.PubMedGoogle Scholar
  48. Salzberg, B. M., Obaid, A. L., Senseman, D. M., and Gainer, H., 1983, Optical recording of action potentials from vertebrate nerve terminals using Potentiometric probes provides evidence for sodium and calcium components, Nature 306:36–40.PubMedCrossRefGoogle Scholar
  49. Salzberg, B. M., Obaid, A. L., and Gainer, H., 1985, Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis, J. Gen. Physiol. 86:395–411.PubMedCrossRefGoogle Scholar
  50. Senseman, D. M., and Salzberg, B. M., 1980, Electrical activity in an exocrine gland: Optical recording using a Potentiometric dye, Science 208:1269–1271.PubMedCrossRefGoogle Scholar
  51. Senseman, D. M., Shimizu, H., Horwitz, I. S., and Salzberg, B. M., 1983, Multiple site optical recording of membrane potential from a salivary gland: Interaction of synaptic and electrotonic excitation, J. Gen. Physiol. 81:887–908.PubMedCrossRefGoogle Scholar
  52. Stampfli, R., and Hille, B., 1976, Electrophysiology of the peripheral myelinated nerve, in Frog Neurobiology (R. Llinas and W. Precht, eds.), Springer-Verlag, Berlin, pp. 3–32.CrossRefGoogle Scholar
  53. Waggoner, A. S., 1979, Dye indicators of membrane potential, Annu. Rev. Biophys. Bioeng., 8:47–68.PubMedCrossRefGoogle Scholar
  54. Waggoner, A. S., and Grinvald, A., 1977, Mechanisms of rapid optical changes of potential sensitive dyes, Ann. N.Y. Acad. Sci. 303:217–242.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Brian M. Salzberg
    • 1
  • Ana Lia Obaid
    • 1
  • Harold Gainer
    • 2
  1. 1.University of PennsylvaniaPhiladelphiaUSA
  2. 2.National Institutes of HealthBethesdaUSA

Personalised recommendations