Isolation of Muscle Membranes Containing Functional Ionic Channels

  • Cecilia Hidalgo
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


The physiology of muscle cells has been extensively studied, and there is growing evidence obtained from observations on whole muscle fibers, as well as with isolated membrane preparations, that ionic channels have a crucial role in the process of excitation-contraction coupling.


Skeletal Muscle Sarcoplasmic Reticulum Muscle Membrane Rabbit Skeletal Muscle Frog Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Affolter, H., and Coronado, R., 1985, Planar bilayer recording of single calcium channels from purified muscle transverse tubules, Biophys. J. 47:434a.Google Scholar
  2. Agapito, M. T., and Cabezas, J. A., 1977, Isolation and chemical composition of sarcolemmal membranes from rabbit and frog skeletal muscle, Int. J. Biochem. 8:811–817.CrossRefGoogle Scholar
  3. Aimers, W., and Palade, P. T., 1981, Slow calcium and potassium currents across frog muscle membrane: Measurements with a vaseline-gap technique, J. Physiol. (Lond.) 312:159–176.Google Scholar
  4. Andrew, C. G., and Appel, S. H., 1973, Macromolecular characterization of muscle membranes. I. Proteins and sialic acid of normal and denervated muscle, J. Biol. Chem. 248:5156–5163.PubMedGoogle Scholar
  5. Andrew, C. G., Almon, R. R., and Appel, S. H., 1974, Macromolecular characterization of muscle membranes. Acetylcholine receptor of normal and denervated muscle. 1974, J. Biol. Chem. 249:6163–6165.PubMedGoogle Scholar
  6. Andrew, C.G., Almon, R. R., and Appel, S. H., 1975, Macromolecular characterization of muscle membranes. Endogenous membrane kinase and phosphorylated protein substrate from normal and denervated muscle, J. Biol. Chem. 250:3972–3980.PubMedGoogle Scholar
  7. Barchi, R. L., 1982, Biochemical studies of the excitable membrane sodium channel, Int. Rev. Neurobiol. 23:69–101.PubMedCrossRefGoogle Scholar
  8. Barchi, R. L., Bonilla, E., and Wong, M., 1977, Isolation and characterization of muscle membranes using surface-specific labels, Proc. Natl. Acad. Sci. U.S.A. 74:34–38.PubMedCrossRefGoogle Scholar
  9. Barchi, R. L., Weigele, J. B., Chalikian, D. M., and Murphy, L. E., 1979, Muscle surface membranes. Preparative methods affect apparent chemical properties and neurotoxin binding, Biochim. Biophys. Acta 550:59–76.PubMedCrossRefGoogle Scholar
  10. Barchi, R. L., Cohen, S. A., and Murphy, L. E., 1980, Purification from rat sarcolemma of the saxitoxin-binding component of the excitable membrane sodium channel, Proc. Natl. Acad. Sci. U.S.A. 77:1306–1310.PubMedCrossRefGoogle Scholar
  11. Barchi, R. L., Tanaka, J. C., and Furman, R. E., 1985, Molecular characteristics and functional reconstitution of muscle voltage-sensitive sodium channels, J. Cell. Biochem. 26:135–146.CrossRefGoogle Scholar
  12. Barhanin, J., Ildefonse, M., Rougier, O., Vilela Sampaio, S., Giglio, J. R., and Lazdunski, Mi, 1984, Tityus y-toxin, a high affinity effector of the Na+ channel in muscle, with a selectivity for channels in the surface membrane, Pflugers Arch. 400:22–27.PubMedCrossRefGoogle Scholar
  13. Baskin, R. J., and Kawamoto, R., 1984, Stereological analysis of transverse tubules and sarcoplasmic reticulum isolated from normal and dystrophic skeletal muscle, Biochim. Biophys. Acta 771:109–118.PubMedCrossRefGoogle Scholar
  14. Baylor, S. M., Chandler, W. K., and Marshall, M. W., 1983, Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from arsenazo III calcium transients, J. Physiol. (Lond.) 344:625–666.Google Scholar
  15. Beller, T. J., Gable, K. S., and Keefer, J. M., 1983, Characterization of the membrane bound Mg2+-ATPase of rat skeletal muscle, Biochim. Biophys. Acta 734:221–234.CrossRefGoogle Scholar
  16. Berman, M. C., 1982, Energy coupling and uncoupling of active calcium transport by sarcoplasmic reticulum membranes, Biochim. Biophys. Acta 694:95–121.PubMedGoogle Scholar
  17. Bianchi, C. P., 1968, Cell Calcium, New York, Appleton-Century-Crofts.Google Scholar
  18. Boegman, R. J., Manery, J. F., and Pinteric, L., 1970, The separation and partial purification of membrane bound (Na+ + K+)-dependent Mg2+-ATPase and (Na+ + K+-independent Mg2+-ATPase from frog skeletal muscle, Biochim. Biophys. Acta 203:506–530.PubMedCrossRefGoogle Scholar
  19. Borsotto, M., Barhanin, J., Norman, R. I., and Lazdunski, M., 1984, Purification of the dihydropyridine receptor of the voltage-dependent Ca2+ channel from skeletal muscle transverse tubules using (+) [3H] PN 200–110, Biochem. Biophys. Res. Commun. 122:1357–1366.PubMedCrossRefGoogle Scholar
  20. Brandt, N., Kawamoto, R. M., and Caswell, A. H., 1985a, Dihydropyridine binding sites on transverse tubules isolated from triads of rabbit skeletal muscle, J. Receptor. Res. 5:155–170.Google Scholar
  21. Brandt, N. R., Kawamoto, R. M., and Caswell, A. H., 1985b, Effects of mercaptans upon dihydropyridine binding sites on transverse tubules isolated from triads of rabbit skeletal muscle, Biochem. Biophys. Res. Commun. 127:205–212.PubMedCrossRefGoogle Scholar
  22. Campbell, K., Franzini-Armstrong, C., and Shamoo, A., 1980, Further characterization of light and heavy sarcoplasmic reticulum vesicles. Identification of the ‘sarcoplasmic reticulum feet’ associated with heavy sarcoplasmic reticulum vesicles, Biochim. Biophys. Acta 602:97–116.PubMedCrossRefGoogle Scholar
  23. Caswell, A. H., Baker, S. P., Boyd, H., Potter, L. T., and Garcia, A. M., 1978, β-Adrenergic receptor and adenylate cyclase in transverse tubules of skeletal muscle, J. Biol. Chem. 253:3049–3054.PubMedGoogle Scholar
  24. Chandler, W. K., Rakowski, R. F., and Schneider, M. F., 1976, A non-linear voltage dependent charge movement in frog skeletal muscle, J. Physiol. (Lond.) 254:245–283.Google Scholar
  25. Chin, H., and Beeler, T., 1985, Nitrendipine binding to transverse tubule and plasma membrane vesicles purified from rat skeletal muscle, Biophys. J. 47:265a.Google Scholar
  26. Costantin, L. L., 1970, The role of sodium current in the radial spread of contraction in frog muscle fibers, J. Gen. Physiol. 55:703–715.PubMedCrossRefGoogle Scholar
  27. Cota, G., and Stefani, E., 1985, Fast and slow Ca channels in twitch muscle fibers of the frog, Biophys. J. 47:65a.Google Scholar
  28. Curtis, B. M., and Catterall, W. A., 1984, Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules, Biochemistry 23:2113–2118.PubMedCrossRefGoogle Scholar
  29. De Boland, A. R., Gallego, S., and Boland, R., 1983, Effects of vitamin D-3 on phosphate and calcium transport across and composition of skeletal muscle plasma cell membranes, Biochim. Biophys. Acta 733:264–273.PubMedCrossRefGoogle Scholar
  30. De Kretser, T. A., and Livett, B. G., 1977, Skeletal muscle sarcolemma from normal and dystrophic mice. Isolation, characterization and lipid composition, Biochem. J. 168:229–237.PubMedGoogle Scholar
  31. Desnuelle, C., Lombet, A., Liot, D., Maroux, S., and Serratrice, G., 1983, Complete monitoring of the purification of the plasma membrane from rabbit skeletal muscle, Biochem. Biophys. Res. Commun. 112:521–527.PubMedCrossRefGoogle Scholar
  32. Endo, M., 1977, Calcium release from the sarcoplasmic reticulum, Physiol. Rev. 57:71–108.PubMedGoogle Scholar
  33. Fabiato, A., and Fabiato, F., 1977, Calcium release from the sarcoplasmic reticulum, Circ. Res. 40:119–129.PubMedGoogle Scholar
  34. Fernandez, J. L., Rosemblatt, M., and Hidalgo, C., 1980, Highly purified sarcoplasmic reticulum vesicles are devoid of Cs2+-independent (‘basal’) ATPase activity, Biochim. Biophys. Acta 599:552–568.PubMedCrossRefGoogle Scholar
  35. Festoff, B. W., and Engel, W. K., 1974, In vitro analysis of the general properties and junctional receptor characteristics of skeletal muscle membranes. Isolation, purification and partial characterization of sarcolemmal fragments, Proc. Natl. Acad. Sci. U.S.A. 71:2435–2439.PubMedCrossRefGoogle Scholar
  36. Festoff, B. W., Oliver, K. L., and Reddy, N. B., 1977, In vitro studies of skeletal muscle membranes. Adenylate cyclase of fast and slow twitch muscle and the effects of denervation, J. Membr. Biol. 32:331–343.PubMedCrossRefGoogle Scholar
  37. Fiehn, W., Peter, J. B., Mead, J. F., and Gan-Elepano, M., 1971, Lipids and fatty acids of sarcolemma, sarcoplasmic reticulum and mitochondria from rat skeletal muscle, J. Biol. Chem. 246:5617–5620.PubMedGoogle Scholar
  38. Ford, L. E., and Podolsky, R. J., 1970, Regenerative calcium release within muscle cells, Science 167:58–69.PubMedCrossRefGoogle Scholar
  39. Fosset, M., Jaimovich, E., Delpont, E., and Lazdunski, M., 1983, [3H]Nitrendipine receptors in skeletal muscle. Properties and preferential localization in transverse tubules, J. Biol. Chem. 258:6086–6091.PubMedGoogle Scholar
  40. Galizzi, J.-P., Fosset, M., and Lazdunski, M., 1984a, [3H]Verapamil binding sites in skeletal muscle transverse tubule membranes, Biochem. Bioophys. Res. Commun. 118:239–245.CrossRefGoogle Scholar
  41. Galizzi, J.-P., Fosset, M., and Lazdunski, M., 1984b, Properties of receptors for the Ca2+-channel blocker verapamil in transverse-tubule membranes of skeletal muscle. Stere-ospecificity, effect of Ca2+ and other inorganic cations, evidence for two categories of sites and effect of nucleoside triphosphates, Eur. J. Biochem. 144:211–215.PubMedCrossRefGoogle Scholar
  42. Glossman, H., Ferry, D. R., and Boschek, C. B., 1983, Puurification of the putative calcium channel from skeletal muscle with the aid of [3H]-nimodipine binding, Arch. Pharmacol. 323:1–11.CrossRefGoogle Scholar
  43. Grefrath, S. P., Smith, P. B., and Appel, S. H., 1978, Characterization of the β -adrenergic receptor and adenylate cyclase in skeletal muscle plasma membranes, Arch. Biochem. Biophys. 188:328–337.PubMedCrossRefGoogle Scholar
  44. Hidalgo, C., Gonzalez, M. E., and Lagos, R., 1983, Characterization of the Ca2+- or Mg2+-ATPase of transverse tubule membranes isolated from rabbit skeletal muscle, J. Biol. Chem. 258:13937–13945.PubMedGoogle Scholar
  45. Hidalgo, C., Gonzalez, M. E., and Garcia, A. M., 1986a, Calcium transport by transverse tubules from rabbit skeletal muscle, Biochim. Biophys. Acta 854:279–286.PubMedCrossRefGoogle Scholar
  46. Hidalgo, C., Parra, C., Riquelme, G., and Jaimovich, E., 1986b, Transverse tubules from frog skeletal muscle. Purification and properties of vesicles sealed with the inside-out orientation, Biochim. Biophys. Acta 855:79–88.PubMedCrossRefGoogle Scholar
  47. Jaimovich, E., Venosa, R. A., Shrager, P., and Horowitz, P., 1976, Density and distribution of tetrodotoxin receptors in normal and detubulated frog sartorius muscle, J. Gen. Physiol. 67:399–416.PubMedCrossRefGoogle Scholar
  48. Jaimovich, E., Ildefonse, M., Barhanin, J., Rougier, O., and Lazdunski, M., 1982, Centru-roides toxin, a selective blocker of surface Na+ channels in skeletal muscle: Voltage-clamp analysis and biochemical characterization of the receptor, Proc. Natl. Acad. Sci. U.S.A. 79:3896–3900.PubMedCrossRefGoogle Scholar
  49. Jaimovich, E., Chicheportiche, R., Lombet, A., Lazdunski, M., Ildefonse, M., and Rougier, O., 1983, Differences in the properties of Na+ channels in muscle surface and T-tubular membranes revealed by tetrodotoxin derivatives, Pflugers Arch. 397:1–5.PubMedCrossRefGoogle Scholar
  50. Jaimovich, E., Donoso, P., Liberona, J. L., and Hidalgo, C., 1986, Ion pathways in transverse tubules. Quantification of receptors in membranes isolated from frog and rabbit skeletal muscle, Biochim. Biophys. Acta 855:89–98.PubMedCrossRefGoogle Scholar
  51. Kidwai, A. M., Radcliffe, M. A., Lee, E. Y., and Daniel, E. E., 1973, Isolation and properties of skeletal muscle plasma membranes, Biochim. Biophys. Acta 298:593–607.PubMedCrossRefGoogle Scholar
  52. Kirley, T. L., and Schwartz, A., 1984, Solubilization and affinity labeling of a dihydropyr-idine binding site from skeletal muscle: Effects of temperature and diltiazem on [3H]dihydropyridine binding to transverse tubules, Biochem. Biophys. Res. Commun. 123:41–49.PubMedCrossRefGoogle Scholar
  53. Kono, T., and Colowick, S. P., 1961, Isolation of skeletal muscle cell membrane and some of its properties, Arch. Biochem. Biophys. 93:520–533.PubMedCrossRefGoogle Scholar
  54. Kraner, S. D., Tanaka, J. C., Roberts, R. H., and Barchi, R. L., 1985, Purification and functional reconstitution of the voltage-sensitive sodium channel from rabbit T-tubular membranes, Biophys. J. 47:440a.Google Scholar
  55. Latorre, R., Vergara, C., and Hidalgo, C., 1982, Reconstitution in planar lipid bilayers of a Ca dependent K channel from transverse tubule membranes isolated from rabbit skeletal muscle, Proc. Natl. Acad. Sci. U.S.A. 79:605–609.CrossRefGoogle Scholar
  56. Latorre, R., Alvarez, O., Cecchi, X., and Vergara, C., 1985, Properties of reconstituted ion channels, Annu. Rev. Biophys. Biophys. Chem. 14:79–111.PubMedCrossRefGoogle Scholar
  57. Lau, Y. H., Caswell, A. H., and Brunschwig, J.-P., 1977, Isolation of transverse tubules by fractionation of triad junctions of skeletal muscle, J. Biol. Chem. 252:5565–5574.PubMedGoogle Scholar
  58. Lau, Y. H., Caswell, A. H., Brunschwig, J.-P., Baerwald, R. J., and Garcia, M., 1979a, Lipid analysis and freeze-fracture studies on isolated transverse tubules and sarcoplasmic reticulum subfractions of skeletal muscle, J. Biol. Chem. 254:540–546.PubMedGoogle Scholar
  59. Lau, Y. H., Caswell, A. H., Garcia, A. M., and Letellier, L., 1979b, Ouabain binding and coupled sodium, potassium and chloride transport in isolated transverse tubules of skeletal muscle, J. Gen. Physiol. 74:335–349.PubMedCrossRefGoogle Scholar
  60. Liberona, J. L., and Jaimovich, E., 1986, Tetrodotoxin receptors in membranes isolated from frog skeletal muscle. Differential sensitivity to amino group reagents. Arch. Biochem. Biophys. (submitted).Google Scholar
  61. Malouf, N. N., and Meissner, G., 1979, Localization of an Mg2+-or-Ca2+-activated (‘basic’) ATPase in skeletal muscle, Exp. Cell Res. 122:233–250.PubMedCrossRefGoogle Scholar
  62. Malouf, N. N., Samsa, D., Allen, P., and Meissner, G., 1981, Biochemical and cytochemical comparison of surface membranes from normal and dystrophic chickens, Am. J. Pathol. 105:223–231.PubMedGoogle Scholar
  63. Martonosi, A. N., 1984, Mechanisms of Ca2+-release from sarcoplasmic reticulum of skeletal muscle, Physiol. Rev. 64:1240–1320.PubMedGoogle Scholar
  64. McNamara, D. B., Sulakhe, P. V., and Dhalla, N. S., 1971, Properties of the sarcolemmal calcium-ion-stimulated adenosine triphosphatase of hamster skeletal muscle, Biochem. J. 125:525–530.PubMedGoogle Scholar
  65. Meissner, G., 1975, Isolation and characterization of two types of sarcoplasmic reticulum vesicles, Biochim. Biophys. Acta 389:51–68.PubMedCrossRefGoogle Scholar
  66. Michalak, M., Famulski, K., and Carafoli, E., 1984, The Ca2+-pumping ATPase in skeletal muscle sarcolemma. Calmodulin dependence, regulation by cAMP-dependent phosphorylation, and purification, J. Biol. Chem. 259:15540–15547.PubMedGoogle Scholar
  67. Miller, C., 1983, Integral membrane channels: Studies in model membranes, Physiol. Rev. 63:1209–1242.PubMedGoogle Scholar
  68. Mitchell, R. D., Volpe, P., Palade, P., and Fleischer, S., 1983, Biochemical characterization, integrity and sidedness of purified skeletal muscle triads, J. Biol. Chem. 258:9867–9877.PubMedGoogle Scholar
  69. Moczydlowski, E.G., 1985, Na-channel block by μ-conotoxin GUIa: A peptide toxin specific for skeletal muscle, Biophys. J. 47:190a.Google Scholar
  70. Moczydlowski, E., and Latorre, R., 1983a, Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers: Evidence for two voltage-dependent Ca2+ binding reactions, J. Gen. Physiol. 82:511–542.PubMedCrossRefGoogle Scholar
  71. Moczydlowski, E., and Latorre, R., 1983b, Saxitoxin and ouabain binding activity of isolated skeletal muscle membranes as indicators of surface origin and purity, Biochim. Biophys. Acta 732:412–420.PubMedCrossRefGoogle Scholar
  72. Moczydlowski, E., Garber, S., and Miller, C., 1984, Batrachotoxin-activated Na+ channels in planar lipid bilayers. Competition of tetrodotoxin block by Na+, J. Gen. Physiol. 84:665–686.PubMedCrossRefGoogle Scholar
  73. Nagatomo, T., and Peter, J. B., 1975, (Na+ + K+)-ATPase in subcellular fractions of rat skeletal muscle, Exp. Neurol. 49:345–355.PubMedCrossRefGoogle Scholar
  74. Narahara, H. T., Vogrin, V. G., Green, J. D., Kent, R. A., and Gould, M. K., 1979, Isolation of plasma membrane vesicles, derived from transverse tubules, by selective homogenization of subcellular fractions of frog skeletal muscle in isonotic media, Biochim. Biophys. Acta 552:247–261.PubMedCrossRefGoogle Scholar
  75. Nicola Siri, L., Sanchez, J. A., and Stefani, E., 1980, Effect of glycerol treatment on the calcium current of frog skeletal muscle, J. Physiol. (Lond.) 305:87–96.Google Scholar
  76. Orozco, C., Suarez-Isla, B., Froehlich, J. P., and Heller, P. F., 1985, Calcium channels in sarcoplasmic reticulum (SR) membranes, Biophys. J. 47:57a.Google Scholar
  77. Peter, J. B., 1970, A (Na+ + K+) ATPase of sarcolemma from skeletal muscle, Biochem. Biophys. Res. Commun. 40:1362–1367.PubMedCrossRefGoogle Scholar
  78. Pinkett, M. O., and Perlman, R. L., 1974, Phosphorylation of muscle plasma membrane protein by a membrane-bound protein kinase, Biochim. Biophys. Acta 372:379–387.CrossRefGoogle Scholar
  79. Raible, D. G., Cutler, L. S., and Rodan, G. A., 1978, Localization of adenylate cyclase in skeletal muscle sarcoplasmic reticulum and its relation to calcium accumulation, FEBS Lett. 85:149–152.PubMedCrossRefGoogle Scholar
  80. Reddy, N. B., and Engel, W. K., 1979, In vitro characterization of skeletal muscle β -adrenergic receptors coupled to adenylate cyclase, Biochim. Biophys. Acta 585:343–359.PubMedCrossRefGoogle Scholar
  81. Reddy, N. B., Engel, W. K., and Festoff, B. W., 1976, In vitro studies of skeletal muscle membranes. Characterization of a phosphorylated intermediate of sarcolemmal (Na+ + K+) ATPase, Biochim. Biophys. Acta 433:365–382.CrossRefGoogle Scholar
  82. Reddy, N. B., Oliver, K. L., Festoff, B. W., and Engel, W. K., 1978, Adenylate cyclase system of human skeletal muscle. Subcellular distrubution and general properties, Biochim. Biophys. Acta 540:371–388.CrossRefGoogle Scholar
  83. Rock, E., Lefaucheur, L., and Chevallier, J., 1984, Isolation and characterization of plasma membranes from rabbit skeletal muscle, Biochem. Biophys. Res. Commun. 123:216–222.PubMedCrossRefGoogle Scholar
  84. Rosemblatt, M., Hidalgo, C., Vergara, C., and Ikemoto, N., 1981, Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle, J. Biol. Chem. 256:8140–8148.PubMedGoogle Scholar
  85. Sabbadini, R. A., and Okamoto, V. R., 1983, The distribution of ATPase activities in purified transverse tubule membranes, Arch. Biochem. Biophys. 223:107–119.PubMedCrossRefGoogle Scholar
  86. Saito, A., Sciler, S., and Fleischer, S., 1984, Alterations in the morphology of rabbit skeletal muscle plasma membranes during membrane isolation, J. Ultrastruct. Res. 86:277–293.PubMedCrossRefGoogle Scholar
  87. Scales, D., and Sabbadini, R. A., 1979, Microsomal T system. A stereological analysis of purified microsomes derived from normal and dystrophic skeletal muscle, J. Cell. Biol. 83:33–46.PubMedCrossRefGoogle Scholar
  88. Schapira, G., Dobocz, I., Piau, J. P., and Delain, E., 1974, An improved technique for preparations of skeletal muscle cell plasma membranes, Biochim. Biophys. Acta 345:348–358.CrossRefGoogle Scholar
  89. Schmalbruck, H., 1979, ‘Square arrays’ in the sarcolemma of human skeletal muscle, Nature 281:145–146.CrossRefGoogle Scholar
  90. Schneider, M. F., and Chandler, W. K., 1973, Voltage-dependent charge movement in skeletal muscle: A possible step in excitation-contraction coupling, Nature 242:244–246.PubMedCrossRefGoogle Scholar
  91. Schwartz, L. M., McCleskey, E. W., and Almers, W., 1985, Dihydropyridine receptors in muscle are voltage-dependent, but most are not functional calcium channels, Nature 314:747–751.PubMedCrossRefGoogle Scholar
  92. Sciler, S., and Fleischer, S., 1982, Isolation of plasma membrane vesicles from rabbit skeletal muscle and their use in ion transport studies, J. Biol. Chem. 257:13862–13871.Google Scholar
  93. Severson, D. L., Drummond, G. I., and Sulakhe, P. V., 1972, Adenylate cyclase in skeletal muscle. Kinetic properties and hormonal stimulation, J. Biol. Chem. 247:2949–2958.PubMedGoogle Scholar
  94. Smith, J. S., Coronado, R., and Meissner, G., 1985, A nucleotide stimulated calcium conducting channel from sarcoplasmic reticulum incorporated into planar lipid bilayers, Biophys. J. 47:451a.CrossRefGoogle Scholar
  95. Stephenson, E. W., 1982, The role of free calcium ion in calcium release in skinned muscle fibers, Can. J. Physiol. Pharmacol. 60:417–426.PubMedCrossRefGoogle Scholar
  96. Sulakhe, P. V., Fedelesova, M., McNamara, D. B., and Dhalla, N. S., 1971, Isolation of skeletal muscle membrane fragments containing active Na+-K+ stimulated ATPase: Comparison of normal and dystrophic muscle sarcolemma, Biochem. Biophys. Res. Commun. 42:793–800.PubMedCrossRefGoogle Scholar
  97. Sumnicht, G. E., and Sabbadini, R. A., 1982, Lipid composition of transverse tubular membranes from normal and dystrophic skeletal muscle, Arch. Biochem. Biophys. 215:628–637.PubMedCrossRefGoogle Scholar
  98. Vergara, J., Delay, M., and Tsien, R. J., 1985, Inositol (1,4,5) trisphosphate. A possible chemical link in excitation-contraction coupling in muscle, Proc. Natl. Acad. Sci. U.S.A. 82:6352–6356.PubMedCrossRefGoogle Scholar
  99. Walaas, O., Walaas, E., Lystad, E., Alertsen, A. R., Horn, R. S., and Forsum, S., 1977, A stimulatory effect of insulin on phosphorylation of a peptide in sarcolemma-enriched membrane preparation from rat skeletal muscle, FEBS Lett. 80:417–422.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Cecilia Hidalgo
    • 1
    • 2
    • 3
  1. 1.Department of Muscle ResearchBoston Biomedical Research InstituteBostonUSA
  2. 2.Department of NeurologyHarvard Medical SchoolBostonUSA
  3. 3.Centro de Estudios Cientificos de SantiagoSantiagoChile

Personalised recommendations