The Use of Specific Ligands to Study Sodium Channels in Muscle

  • Enrique Jaimovich
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


In the last 15 years the study of the ion channels as receptors for toxins, drugs, and hormones has yielded most of the information we now have on the biochemistry of these particular membrane protein molecules. Chemically gated channels are natural receptors and have been studied as such in several ways (see Barrantes, Chapter 24). In order to use this approach with voltage-gated channels, we need to have ligands that will bind to the channel with a fairly high specificity. Fortunately, nature has developed such molecules, at least for some voltage-gated channels, and binding of the ligand to the channel can be expressed according to the following reaction scheme:
$$Ch + LCh - L $$
where Ch is the channel molecule, L is the ligand, Ch-L represents the channel-ligand complex, and k 1 and k -1 are the rate constants for the association and dissociation reactions of the ligand with the channel, respectively.


Sodium Channel Sodium Current Muscle Membrane Mammalian Skeletal Muscle Frog Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnew, W. S., 1984, Voltage-regulated sodium channel molecules, Annu. Rev. Physiol. 46:517–530.PubMedCrossRefGoogle Scholar
  2. Almers, W., and Stirling, C., 1984, Distribution of transport proteins over animal cell membranes, J. Membr. Biol. 77:169–186.PubMedCrossRefGoogle Scholar
  3. Barchi, R. L., Weigele, J. B., Chalikian, D. M., and Murphy, L. E., 1979, Muscle surface membranes. Preparative methods affect apparent chemical properties and neurotoxin binding, Biochim. Biophys. Acta 550:59–76.PubMedCrossRefGoogle Scholar
  4. Barhanin, J., Ildefonse, M., Rougier, O., Videla Sampaio, S., Giglio, J. R., and Lazdunski, M., 1984, Tityus y toxin, a high affinity effector of the Na+ channel in muscle, with a selectivity for channels in the surface membrane, Pflugers Arch. 400:22–27.PubMedCrossRefGoogle Scholar
  5. Beam, K. G., Caldwell, J. H., and Campbell, D. T., 1985, Na channels in skeletal muscle concentrated near the neuromuscular junction, Nature 313:588–590.PubMedCrossRefGoogle Scholar
  6. Cahalan, M. D., 1975, Modification of sodium channel gating in frog myelenated nerve fibres by Centruroides sculpturatus scorpion venom, J. Physiol. (Lond.) 244:511–534.Google Scholar
  7. Caillé, J., Ildefonse, M., and Rougier, O., 1978, Existence of a sodium current in the tubular membrane of frog twitch muscle fibre; implication in excitation contraction, Pflugers Arch. 374:167–177.PubMedCrossRefGoogle Scholar
  8. Caillé, J., Ildefonse, M., Rougier, O., and Roy, G., 1981, Surface and tubular membrane sodium currents in frog twitch muscle fibre; implication in excitation contraction coupling, Adv. Physiol. Sci. 5:389–409.Google Scholar
  9. Catterall, W. A., 1980, Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes, Annu. Rev. Pharmacol. Toxicol. 20:15–44.PubMedCrossRefGoogle Scholar
  10. Catterall, W. A., and Coppersmith, J. 1981, High-affinity saxitoxin receptor sites in vertebrate heart: Evidence for sites associated with autonomic nerve endings, Mol. Pharmacol. 20:526–532.PubMedGoogle Scholar
  11. Chicheportiche, R., Balerna, M., Lombet, A., Romey, G., and Lazdunski, M., 1980, Synthesis of new, highly radioactive tetrodotoxin derivatives and their binding properties to the sodium channel, Eur. J. Biochem. 104:617–625.PubMedCrossRefGoogle Scholar
  12. Chen, C. J., Bean, B. P., Colatsky, T. J., and Tsien, R. W., 1981, Concentration dependenceGoogle Scholar
  13. of tetrodotoxin action on sodium currents and maximum upstroke velocity in rabbit cardiac Purkinje fibers, J. Gen. Physiol. 78:383–411.Google Scholar
  14. Dudel, J., Pepek, K., Dudel, R., and Trantwein, E., 1967, The effect of tetrodotoxin in the membrane current in cardiac muscle (Purkinje fibers), Pflugers Arch. 295:213–226.CrossRefGoogle Scholar
  15. Fleckenstein, A., 1983, History of calcium antagonists, Circ. Res. 52:3–16.Google Scholar
  16. Fosset, M., Jaimovich, E., Delpont, E., and Lazdunski, M., 1983, (3H)Nitrendipine receptors in skeletal muscle. Properties and preferential localization in transverse tubules, J. Biol. Chem. 258:6086–6092.PubMedGoogle Scholar
  17. Frelin, C., Vigne, P., and Lazdunski, M., 1983, Na+ channels with high and low affinity tetrodotoxin binding sites in the mammalian skeletal muscle cell, J. Biol. Chem. 258:7256–7259.Google Scholar
  18. Gundersen, C. B., Miledi, R., and Parker, I., 1983, Voltage-operated channels induced by foreign messenger RNA in Xenopus oocytes, Proc. R. Soc. Lond. [Biol.] 220:131–140.CrossRefGoogle Scholar
  19. Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer Associates, Sunderland, MA.Google Scholar
  20. Jaimovich, E., Venosa, R. A., Shrager, P., and Horowicz, P., 1976, Density and distribution of tetrodotoxin receptors in normal and detubulated frog sartorius muscle, J. Gen. Physiol. 67:399–416.PubMedCrossRefGoogle Scholar
  21. Jaimovich, E., Ildefonse, M., Barhanin, J., Rougier, O., and Lazdunski, M., 1982, Centru-roides toxin, a selective blocker of surface Na+ channels in skeletal muscle: Voltage clamp analysis and biochemical characterization of the receptor, Proc. Natl. Acad. Sci. U.S.A. 79:3896–3900.PubMedCrossRefGoogle Scholar
  22. Jaimovich, E., Chicheportiche, R., Lombet, A., Lazdunski, M., Ildefonse, M., and Rougier, O., 1983, Differences in the properties of Na+ channels in muscle surface and T-tubular membranes revealed by tetrodotoxin derivatives, Pflugers Arch. 397:1–5.PubMedCrossRefGoogle Scholar
  23. Jaimovich, E., Liberona, J. L., and Hidalgo, C., 1985, Characterization of two types of tetrodotoxin receptors in isolated frog muscle membranes, Biophys. J. 47:192a.Google Scholar
  24. Lombet, A., and Lazdunski, M., 1984, Characterization, solubilization, affinity labeling and purification of the cardiac Na+ channel using Tityus toxin, Eur. J. Biochem. 141:651–660.PubMedCrossRefGoogle Scholar
  25. Lombet, A., Renaud, J. F., Chicheportiche, R., and Lazdunski, M., 1981, A cardiac tetro-dotoxin-binding component. Biochemical identification, characterization and properties, Biochemistry 20:1279–1285.PubMedCrossRefGoogle Scholar
  26. Meves, H., Rubly, M., and Watt, D. D., 1982, Effect of toxins isolated from the venom of the scorpion Centruroides sculpturates on the Na currents of the node of Ranvier, Pflugers Arch. 393:56–62.PubMedCrossRefGoogle Scholar
  27. Moczydlowski, E., Garber, S., and Miller, C., 1984, Batrachotoxin activates Na+ channels in planar lipid bilayers. Competition of tetrodotoxin block with Na+, J. Gen. Physiol. 84:665–686.PubMedCrossRefGoogle Scholar
  28. Pappone, P. A., 1980, Voltage clamp experiments in normal and denervated mammalian skeletal muscle fibers, J. Physiol. (Lond.) 306:377–410.Google Scholar
  29. Redfern, P., and Thesleff, S., 1971, Action potential generation in denervated rat skeletal muscle II. The action of tetrodotoxin, Acta Physiol. Scand. 82:70–78.PubMedCrossRefGoogle Scholar
  30. Renaud, J. F., Kazozoglu, T., Lombet, A., Chicheportiche, R., Jaimovich, E., Romey, G., and Lazdunski, M., 1983, The Na+ channel in mammalian cardiac cells. Two kinds of tetrodotoxin receptors in rat heart membranes, J. Biol. Chem. 258:8799–8805.PubMedGoogle Scholar
  31. Rogart, R., 1981, Sodium channels in nerve and muscle membrane, Annu. Rev. Physiol. 43:711–725.PubMedCrossRefGoogle Scholar
  32. Rosemblatt, R., Hidalgo, C., Vergara, C., and Ikemoto, N., 1981, Inmunological and biochemical properties of transverse tubular membranes isolated from rabbit skeletal muscle, J. Biol. Chem. 256:8140–8144.PubMedGoogle Scholar
  33. Stuhmer, W., and Almers, W., 1982, Photobleaching through glass micropipettes: Sodium channels without lateral mobility in the sarcolemma of frog skeletal muscle, Proc. Natl. Acad. Sci. U.S.A. 79:946–950.PubMedCrossRefGoogle Scholar
  34. Tanaka, J. C., Dogle, D. D., and Barr, L., 1984, Sodium channels in vertebrate hearts. Three types of saxitoxin binding sites in heart, Biochim. Biophys. Acta 775:203–214.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Enrique Jaimovich
    • 1
  1. 1.Departamento de Fisiología y Biofísica, Facultad de MedicinaUniversidad de ChileSantiagoChile

Personalised recommendations