Advertisement

Voltage-Dependent Gating

Gating Current Measurement and Interpretation
  • Francisco Bezanilla
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)

Abstract

The voltage dependence of ionic conductances such as those of sodium and potassium is the result of the voltage influence on the open and closed times of individual channels. This means that an understanding of the voltage dependence of the fraction of open channels will help to correlate the microscopic (single-channel) and macroscopic properties (total ionic current). The question arises as to how the channel goes from the open to the closed configuration and, in particular, how the voltage across the membrane regulates the state of the channel, a process known as voltage gating.

Keywords

Sodium Channel Closed State Voltage Dependence Sodium Current Membrane Capacitance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnew, W. S., Levinson, S. R., Brabson, J. S., and Raftery, M. A., 1978, Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes, Proc. Natl. Acad. Sci. U.S.A. 75:2606–2610.PubMedCrossRefGoogle Scholar
  2. Armstrong, C. M., 1981, Sodium channels and gating currents, Physiol. Rev. 61:644–683.PubMedGoogle Scholar
  3. Armstrong, C. M., and Bezanilla, F., 1973, Currents related to movement of the gating particles of the sodium channel, Nature 242:459–461.PubMedCrossRefGoogle Scholar
  4. Armstrong, C. M., and Bezanilla, F., 1974, Charge movement associated with the opening and closing of the activation gates of the Na channels, J. Gen. Physiol. 63:533–552.PubMedCrossRefGoogle Scholar
  5. Armstrong, C. M., and Bezanilla, F., 1977, Inactivation of the sodium channel. II. Gating current experiments, J. Gen. Physiol. 70:567–590.PubMedCrossRefGoogle Scholar
  6. Armstrong, C. M., and Gilly, W. F., 1979, Fast and slow steps in the activation of sodium channels, J. Gen. Physiol. 74:691–711.PubMedCrossRefGoogle Scholar
  7. Bezanilla, F., and Armstrong, C. M., 1977, Inactivation of the sodium channel. I. Sodium current experiments, J. Gen. Physiol. 70:549–566.PubMedCrossRefGoogle Scholar
  8. Bezanilla, F., and Taylor, R. E., 1982, Voltage dependent gating of sodium channels, in Abnormal Nerves and Muscles as Impulse Generators (W. J. Culp and J. Ochoa, eds.), Oxford University Press, New York, pp. 62–79.Google Scholar
  9. Bezanilla, F., Taylor, R. E., and Fernandez, J. M., 1982, Distribution and kinetics of membrane dielectric polarization. I. Long term inactivation of gating currents, J. Gen. Physiol. 79:21–40.PubMedCrossRefGoogle Scholar
  10. Clausen, C., and Fernandez, J. M., 1981, A low cost method for rapid transfer function measurements with direct application to biological impedance analysis, Pflugers Arch. 390:290–295.PubMedCrossRefGoogle Scholar
  11. Cooley, J. W., and Tukey, J. W., 1965, An algorithm for the machine calculation of complex Fourier series, Math. Comput. 19:297.CrossRefGoogle Scholar
  12. Fernandez, J. M., Bezanilla, F., and Taylor, R. E., 1982, Distribution and kinetics of membrane dielectric polarization. II. Frequency domain studies of gating currents, J. Gen. Physiol. 79:41–67.PubMedCrossRefGoogle Scholar
  13. Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (Lond.) 117:500–544.Google Scholar
  14. Hodgkin, A. L., Huxley, A. F., and Katz, B., 1952, Measurement of current-voltage relations in the membrane of the giant axon of Loligo, J. Physiol. (Lond.) 116:424–448.Google Scholar
  15. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, M., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence, Nature 312:121–127.PubMedCrossRefGoogle Scholar
  16. Otnes, R. K., and Enochson, L., 1978, Applied Time Series Analysis, Volume 1. Basic Techniques, John Wiley & Sons, New York.Google Scholar
  17. Oxford, G. S., 1981, Some kinetic and steady-state properties of the sodium channels after removal of inactivation, J. Gen. Physiol. 77:1–22.PubMedCrossRefGoogle Scholar
  18. Poussait, D., and Ganguly, U. S., 1977, Rapid measurement of system kinetics an instrument for real-time transfer function analysis, Proc. IEEE 65:741–747.CrossRefGoogle Scholar
  19. Stimers, J. R., Bezanilla, F., and Taylor, R. E., 1983, Sodium channel activation in pronase treated axons, Biophys. J. 41:144a.Google Scholar
  20. Stimers, J. R., Bezanilla, F., and Taylor, R. E., 1984, Squid axon sodium channel: Gating current without rising phase, Biophys. J. 45:12a.Google Scholar
  21. Stimers, J. R., Bezanilla, F., and Taylor, R. E., 1985a, Frequency domain measurements of membrane capacitance in squid axons with and without rising phase on the gating current, Biophys. J. 47:31a.Google Scholar
  22. Stimers, J. R., Bezanilla, F., and Taylor, R. E., 1985b, Sodium channel activation in the squid giant axon. Steady state properties, J. Gen. Physiol. 85:65–82.CrossRefGoogle Scholar
  23. Taylor, R. E., and Bezanilla, F., 1979, Comments on the measurement of gating currents in the frequency domain, Biophys. J. 26:338–340.PubMedCrossRefGoogle Scholar
  24. Taylor, R. E., and Bezanilla, F., 1983, Sodium and gating current time shifts resulting from changes in initial conditions, J. Gen. Physiol. 81:773–784.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Francisco Bezanilla
    • 1
    • 2
  1. 1.Department of PhysiologyAhmanson Laboratory of NeurobiologyLos AngelesUSA
  2. 2.Jerry Lewis Neuromuscular Research CenterUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations