Amiloride-Sensitive Epithelial Sodium Channels

  • Dale J. Benos
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


Electrically high-resistance epithelia actively transport sodium from the luminal side to the blood (Macknight et al., 1980). The first step in this transepithelial movement of Na+ is the facilitated diffusion of this ion across the luminal or apical membrane down its electrochemical potential energy gradient. This particular transport pathway is rate limiting for the overall transport, is regulated hormonally, and is inhibited by the diuretic drug amiloride. Single-site turnover numbers deduced from current-noise experiments (106 ionsJsec) are consistent with a channel or pore-type mechanism (Lindemann and Van Driessche, 1977). Fuchs et al. (1977) and Van Driessche and Lindemann (1979) found that under their experimental conditions, Na+ permeation through these channels could be adequately described by an electrodiffusion model in which the passive movement of Na+ obeys the independence principle.


Apical Membrane Flux Ratio Entry Channel Sodium Transport Frog Skin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aceves, J., and Cereijido, M., 1973, The effect of amiloride on sodium and potassium fluxes in red cells, J. Physiol. (Lond.) 229:707–718.Google Scholar
  2. Aronson, P. S., and Bounds, S. E., 1980, Harmaline inhibition of Na dependent transport in renal microvillus membrane vesicles, Am. J. Physiol. 238:F210–F217.PubMedGoogle Scholar
  3. Baer, J. E., Jones, C. B., Spitzer, S. A., and Russo, H. F., 1967, The potassium sparing and naturiuretic activity of N-amidino-3,5-diamino-6-chloropyrazine-carboxamide hydrochloride dihydrate (amiloride hydrochloride), J. Pharmacol. Exp. Ther. 157:472–485.PubMedGoogle Scholar
  4. Balaban, R. S., Mandel, L. J., and Benos, D. J., 1979, On the cross reactivity of amiloride and 2,4,6-triaminopyrimidine (TAP) for the cellular entry and tight junctional cation permeability pathways in epithelia, J. Membr. Biol. 49:363–390.PubMedCrossRefGoogle Scholar
  5. Benos, D.J., 1982, Amiloride: A molecular probe of sodium transport in tissues and cells, Am. J. Physiol. 242:C131–C145.PubMedGoogle Scholar
  6. Benos, D. J., and Sapirstein, V. S., 1983, Characteristics of an amiloride-sensitive sodium entry pathway in cultured rodent glial and neuroblastoma cells, J. Cell. Physiol. 116:213–220.PubMedCrossRefGoogle Scholar
  7. Benos, D. J., and Watthey, J. W. H., 1981, Inferences on the nature of the apical sodium entry site in frog skin epithelium, J. Pharmacol. Exp. Ther. 219:481–488.PubMedGoogle Scholar
  8. Benos, D. J., Simon, S. A., Mandel, L. J., and Cala, P. M., 1976, Effect of amiloride and some of its analogues on cation transport in isolated frog skin and thin lipid membranes, J. Gen. Physiol. 68:43–63.PubMedCrossRefGoogle Scholar
  9. Benos, D. J., Mandel, L. J., and Balaban, R. S., 1979, On the mechanism of the amilor-ide-sodium entry site interaction in anuran skin epithelia, J. Gen. Physiol. 73:307–326.PubMedCrossRefGoogle Scholar
  10. Benos, D. J., Mandel, L. J., Simon, S. A., 1980, Cationic selectivity and competition at the sodium entry site in frog skin, J. Gen. Physiol. 76:233–247.PubMedCrossRefGoogle Scholar
  11. Benos, D., Latorre, R., and Reyes, J., 1981, Surface potentials and sodium entry in frog skin epithelium, J. Physiol. (Lond.) 321:163–174.Google Scholar
  12. Benos, D. J., Hyde, B. A., and Latorre, R., 1983, Sodium flux ratio through the amiloride-sensitive entry pathway in frog skin, J. Gen. Physiol. 81:667–685.PubMedCrossRefGoogle Scholar
  13. Bentley, P. J., 1968, Amiloride: A potent inhibitor of sodium transport across the toad bladder, J. Physiol. (Lond.) 195:317–330.Google Scholar
  14. Bickling, J. E., Mason, J. W., Woltersdorf, O. W., Jr., Jones, J. H., Kwon, S. F., Robb, C. M., and Cragoe, E. J., 1965, Pyrazine diuretics. I. N-amidino-3-amino-6-halopyra-zine-carboxamides, J. Med. Chem. 8:638–642.CrossRefGoogle Scholar
  15. Cala, P. M., 1983, Volume regulation by red blood cells. Mechanisms of ion transport between cells and mechanisms, Mol. Physiol. 4:33–52.Google Scholar
  16. Chan, Y. L., and Giebisch, G., 1981, Relation between sodium and bicarbonate transport in the rat proximal convoluted tubule, Am. J. Physiol. 240:F222–F230.PubMedGoogle Scholar
  17. Christensen, O., and Bindslev, N., 1982, Fluctuation analysis of short-circuited current in a warm-blooded sodium-retaining epithelium: Site current, density, and interaction with triamterene, J. Membr. Biol. 65:19–30.PubMedCrossRefGoogle Scholar
  18. Cuthbert, A. W., 1981, Sodium entry step in transporting epithelial Results of ligand binding studies, in Ion Transport by Epithelia (S. G. Schultz, ed.), Raven Press, New York, pp. 181–195.Google Scholar
  19. Cuthbert, A. W., and Fanelli, G. M., 1978, Effect of some pyrazine-carboxamides on sodium transport in frog skin, Br. J. Pharmacol. 63:139–149.PubMedGoogle Scholar
  20. Cuthbert, A. W., and Shum, W. K., 1974, Amiloride and the sodium channel, Naunyn Schmiedebergs Arch. Pharmacol. 281:61–69.CrossRefGoogle Scholar
  21. Cuthbert, A. W., and Wilson, S. A., 1981, Mechanisms for the effect of acetylcholine on sodium transport in frog skin, J. Membr. Biol. 59:65–75.PubMedCrossRefGoogle Scholar
  22. de Sousa, R. C., and Grosso, A., 1978, Vasopressin-like effects of a hallucinogenic drug— harmaline—on sodium and water transport, J. Membr. Biol. 40:77–94.PubMedCrossRefGoogle Scholar
  23. Eggena, P., 1981, Inhibition of urea-linked water flux and 14C-urea transport across the toad bladder by amiloride, Proc. Soc. Exp. Biol. Med. 167:55–61.PubMedGoogle Scholar
  24. Erikson, A.-C., and Spring, K. R., 1982, Volume regulation by Necturus gallbladder: Apical Na-H and C1-HCO3 exchange, Am. J. Physiol. 243:C146–C150.Google Scholar
  25. Fuchs, W., Hviid Larsen, E., and Lindemann, B., 1977, Current-voltage curve of sodium permeability in frog skin, J. Physiol. (Lond.) 267:137–166.Google Scholar
  26. Glitzer, M. S., and Steelman, S. L., 1966, N-amidino-3,5-diamino-6-chloropyrazine-carboxamide: An active diuretic in the carboxamide series, Nature 212:191–193.PubMedCrossRefGoogle Scholar
  27. Gottlieb, G. P., Turnheim, K., Frizzell, R. A., and Schultz, S. G., 1978, p-Chloromercu-ribenzene sulfonate blocks and reverses the effect of amiloride on sodium transport across rabbit colon in vitro, Biophys. J. 22:125–129.Google Scholar
  28. Grinstein, S., Cohen, S., and Rothstein, A., 1984, Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na/H antiport, J. Gen. Physiol. 83:341–369.PubMedCrossRefGoogle Scholar
  29. Harvey, B. J., and Kernan, R. P., 1984, Intracellular ion activities in frog skin in relation to external sodium and effects of amiloride andJor ouabain, J. Physiol. (Lond.) 349:501–507.Google Scholar
  30. Hamilton, K. L., and Eaton, D. C., 1985, Single-channel recordings from amiloride-sensitive epithelial sodium channel, Am. J. Physiol. 249:C200–C207.PubMedGoogle Scholar
  31. Helman, S. I., and Fisher, R. S., 1977, Microelectrode studies of the active Na+ transport pathway of frog skin, J. Gen. Physiol. 69:571–604.PubMedCrossRefGoogle Scholar
  32. Hoshiko, T., 1984, Fluctuation analysis of apical sodium transport, Curr. Top. Membr. Transport 20:3–26.CrossRefGoogle Scholar
  33. Ives, H. E., Yee, V. J., Warnock, D. G., 1983, Mixed type inhibition of the renal NaJH antiporter by Li and amiloride, J. Biol. Chem. 258:9710–9716.PubMedGoogle Scholar
  34. Johnson, J. D., Epel, D., and Paul, M. 1976, Intracellular pH activation of sea urchin eggs after fertilization, Nature 262:661–664.PubMedCrossRefGoogle Scholar
  35. Kinsella, J. L., and Aronson, P. S., 1981, Interaction of NH4 and Li with the renal microvillus membrane Na-H exchanger, Am. J. Physiol. 241:C220–C226.PubMedGoogle Scholar
  36. L’Allemain, G., Franchi, A., Cragoe, E., Jr., and Pouyssegur, J., 1984, Blockade of the Na/H antiport abolishes growth factor-induced DNA synthesis in fibroblasts, J. Biol. Chem. 259:4313–4319.PubMedGoogle Scholar
  37. Latorre, R., and Benos, D., 1985, Reconstitution of ionic channels into planar lipid bilayer membranes, in Transmembrane Signaling and Sensation (F. Oosawa, ed.), Japan Scientific Societies Press, Tokyo, pp. 199–213.Google Scholar
  38. Li, J. H., and de Sousa, R. C., 1979, Inhibitory and stimulatory effects of amiloride analogues on sodium transport in frog skin, J. Membr. Biol. 46:155–169.PubMedCrossRefGoogle Scholar
  39. Li, J. H.-Y., and Lindemann, B., 1984, Competitive blocking of epithelial sodium channels by organic cations: The relationship between macroscopic and microscopic inhibition constants, J. Membr. Biol. 76:235–251.Google Scholar
  40. Lindemann, B., 1980, The beginning of fluctuation analysis of epithelial ion transport, J. Membr. Biol. 54:1–11.PubMedCrossRefGoogle Scholar
  41. Lindemann, B., and Van Driessche, W., 1977, Sodium-specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover, Science 195:292–294.PubMedCrossRefGoogle Scholar
  42. Macknight, A. D. C., Dibona, D. R., and Leaf, A., 1980, Sodium transport across toad urinary bladder: A model “tight” epithelium, Physiol. Rev. 60:615–715.PubMedGoogle Scholar
  43. McKinney, T. D., and Burg, M. B., 1978, Bicarbonate absorption by rabbit cortical collecting tubules in vivo, Am. J. Physiol. 234:F141-F145.PubMedGoogle Scholar
  44. Miller, C., 1983, First steps in the reconstruction of ionic channel functions in model membranes, in Current Methods in Cellular Neurobiology, (J. L. Barber, ed.), John Wiley & Sons, New York, pp. 1–37.Google Scholar
  45. Moolenaar, W. H., Boonstra, J., Van der Saag, P. T., and deLast, S. W., 1981, Sodium proton exchange in mouse neuroblastoma cells, J. Biol. Chem. 256:12883–12887.PubMedGoogle Scholar
  46. Moolenaar, W. H., Yarden, Y., deLaat, S. W., and Schlessinger, J., 1982, Epidermal growth factor induces electrically silent Na influx in human fibroblasts, J. Biol. Chem. 257:8502–8506.PubMedGoogle Scholar
  47. Moran, A., and Moran, N., 1984, Amiloride-sensitive sodium pathways in LLC-PK1 epithelia, J. Gen. Physiol. 84:28a.Google Scholar
  48. Nagel, W., Garcia-Diaz, J. F., and Armstrong, W. McD., 1981, Intracellular ionic activities in frog skin, J. Membr. Biol. 61:127–134.PubMedCrossRefGoogle Scholar
  49. O’Donnell, M. E., Cragoe, E., Jr., and Villereal, M. L., 1983, Inhibition of Na influx and DNA synthesis in human fibroblasts and neuroblastoma-glioma hybrid cells by amiloride analogs, J. Pharmacol. Exp. Ther. 226:368–372.PubMedGoogle Scholar
  50. Olans, L., Sariban-Sohraby, S., and Benos, D. J., 1984, Saturation behavior of single, amiloride sensitive Na channels in planar lipid bilayers, Biophys. J., 46:831–835.PubMedCrossRefGoogle Scholar
  51. Owens, N. E., and Villereal, M. L., 1982, Evidence for a role of calmodulin in serum stimulation of Na influx in human fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 79:3537–3541.CrossRefGoogle Scholar
  52. Palmer, L. G., 1982a, Na transport and flux ratio through apical Na channels in toad bladder, Nature 297:688–690.PubMedCrossRefGoogle Scholar
  53. Palmer, L. G., 1982b, Ion selectivity of the apical membrane Na channel in the toad urinary bladder, J. Membr. Biol. 67:91–98.PubMedCrossRefGoogle Scholar
  54. Palmer, L. G., 1984, Voltage-dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder, J. Membr. Biol. 80:153–165.PubMedCrossRefGoogle Scholar
  55. Paris, S., and Pouyssegur, J., 1983, Biochemical characterization of the amiloride-sensitive NaJH antiport in Chinese hamster lung fibroblasts, J. Biol. Chem. 258:3503–3508.PubMedGoogle Scholar
  56. Parker, J. C., 1983, Volume-responsive sodium movements in dog red blood cells, Am. J. Physiol. 244:C324–C330.PubMedGoogle Scholar
  57. Pouyssegur, J., Chambard, J. C., Franchi, A., Paris, S., and Van Obberghen-Schilling, E., 1982, Growth factor activation of an amiloride-sensitive Na/H exchange system in quiescent fibroblasts: Coupling to ribosomal protein S6 phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 79:3935–3539.PubMedCrossRefGoogle Scholar
  58. Rick, R., Dorge, A., Van Arnim, E., and Thurau, K., 1978, Electron microprobe analysis of frog skin epithelium: Evidence for a syncytial Na transport compartment, J. Membr. Biol. 39:257–271.PubMedCrossRefGoogle Scholar
  59. Salako, L. A., and Smith, A. J., 1970, Changes in sodium pool and kinetics of sodium transport in frog skin produced by amiloride, Br. J. Pharmacol. 39:99–109.PubMedGoogle Scholar
  60. Sariban-Sohraby, S., Burg, M. B., and Turner, R. J., 1983, Apical sodium uptake in toad kidney epithelial cell line A6, Am. J. Physiol. 245:C167–C171.PubMedGoogle Scholar
  61. Sariban-Sohraby, S., Latorre, R., Burg, M., Olans, L., and Benos, D., 1984, Amiloride-sensitive epithelial Na channels reconstituted into planar lipid bilayer membranes, Nature 308:80–82.PubMedCrossRefGoogle Scholar
  62. Schellenberg, G. D., and Swanson, P. D., 1982, Properties of the Na-Ca exchange transport system from rat brain: Inhibition by amiloride, Fed. Proc. 41:673.Google Scholar
  63. Segel, I. H., 1975, Enzyme Kinetics, John Wiley & Sons, New York.Google Scholar
  64. Smith, R. L., Macara, I. G., Levenson, R., Housman, D., and Cantley, L., 1982, Evidence that a Na/Ca antiport system regulates murine erythroleukemia cell differentiation, J. Biol. Chem. 257:773–780.PubMedGoogle Scholar
  65. Sordahl, L. A., LaBelle, E. F., and Rex, K. A., 1984, Amiloride and diltiazem inhibition of microsomal and mitochondrial Na and Ca transport, Am. J. Physiol. 246:C172–C176.PubMedGoogle Scholar
  66. Sudou, K., and Hoshi, T., 1977, Mode of action of amiloride in toad urinary bladder, J. Membr.Biol. 32:115–132.PubMedCrossRefGoogle Scholar
  67. Takada, M., and Hayashi, H., 1981, Interactions of cadmium, calcium, and amiloride in the kinetics of active sodium transport through frog skin, Jpn. J. Physiol. 31:285–303.PubMedCrossRefGoogle Scholar
  68. Ussing, H. H., and Zerahn, K., 1951, Active transport of sodium as the source of electric current in the short-circuited isolated frog skin, Acta Physiol. Scand. 23:110–127.PubMedCrossRefGoogle Scholar
  69. Vandenburgh, H. H., and Kaufman, S., 1982, Coupling of voltage-sensitive sodium channel activity to stretch-induced amino acid transport in skeletal muscle in vitro, J. Biol. Chem. 257:13448–13454.PubMedGoogle Scholar
  70. Van Driessche, W., and Lindemann, B., 1979, Concentration dependence of currents through single sodium-selective pores in frog skin, Nature 282:519–520.PubMedCrossRefGoogle Scholar
  71. Villereal, M. L., 1981, Sodium fluxes in human flibroblasts: Effects of serum, Ca and amiloride, J. Cell. Physiol. 107:359–369.PubMedCrossRefGoogle Scholar
  72. Will, P. C., Lebowitz, J. L., and Hopfer, U., 1980, Induction of amiloride-sensitive sodium transport in the rat colon by mineralocorticoids, Am. J. Physiol. 238:F261–F268.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Dale J. Benos
    • 1
  1. 1.Department of Physiology and Biophysics, Laboratory of Human Reproduction and Reproductive BiologyHarvard Medical SchoolBostonUSA

Personalised recommendations