Correlation of the Molecular Structure with Functional Properties of the Acetylcholine Receptor Protein

  • Francisco J. Barrantes
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


The nicotinic acetylcholine receptor (AChR) is an integral membrane protein that transduces the binding of acetylcholine into a local depolarization of the postsynaptic membrane through the transient opening of a cation-selective channel. The AChR is a glycoprotein of about a quarter of a million molecular weight and is by far the best known of all neurotransmitter receptors from both a functional and a structural point of view. This is because the AChR macromolecule is very abundant in tissues such as the electric organ of fish, thus providing an excellent biological source for biochemical studies, and because of the availability of appropriate chemical tools such as α-toxins, which are quasiirreversible competitive antagonists of AChR function. These toxins have extremely high affinity for the receptor and have not only enabled the characterization of some pharmacological properties of the latter but have helped, among other things, to localize the protein in cells and tissues, to study state transitions elicited by agonists, and to purify the AChR by affinity chromatography (see reviews by Barrantes, 1983; Changeux et al., 1983).


Lipid Bilayer Sodium Channel Acetylcholine Receptor Nicotinic Acetylcholine Receptor Electric Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, C. M., 1975, Ionic pores, gates, and gating currents, Q. Rev. Biophys. 7:179–210.CrossRefGoogle Scholar
  2. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E., and Webb, W. W., 1976, Mobility measurements by analysis of fluorescence photobleaching recovery kinetics, Biophys. J. 16:1055–1069.PubMedCrossRefGoogle Scholar
  3. Barrantes, F. J., 1979, Endogeneous chemical receptors: Some physical aspects, Annu. Rev. Biophys. Bioeng. 8:287–321.PubMedCrossRefGoogle Scholar
  4. Barrantes, F. J., 1982a, Interactions of the membrane-bound acetylcholine receptor with the non-receptor, peripheral v-peptide, in Neuroreceptors (F. Hucho, ed.), W. de Gruy-ter, Berlin, New York, pp. 315–328.Google Scholar
  5. Barrantes, F. J., 1982b, Oligomeric forms of the membrane-bound acetylcholine receptor disclosed upon extraction of the M r 43,000 nonreceptor peptide, J. Cell Biol. 92:60–68.PubMedCrossRefGoogle Scholar
  6. Barrantes, F. J., 1983, Recent developments in the structure and function of the acetylcholine receptor, Int. Rev. Neurobiol. 24:259–341.PubMedCrossRefGoogle Scholar
  7. Barrantes, F. J., Neugebauer, D.-C., and Zingsheim, H. P., 1980, Peptide extraction by alkaline treatment is accompanied by rearrangement of the membrane-bound acetylcholine receptor from Torpedo marmorata, FEBS Lett. 112:73–78.PubMedCrossRefGoogle Scholar
  8. Bartholdi, M., Barrantes, F. J., and Jovin, T. M., 1981, Rotational molecular dynamics of the membrane-bound acetylcholine receptor revealed by phosphorescence spectroscopy, Eur. J. Biochem. 120:389–397.PubMedCrossRefGoogle Scholar
  9. Boheim, G., Hanke, W., Barrantes, F. J., Eibl, H., Sakmann, B., Fels, G., and Maelicke, A., 1981, Agonist-activated ionic channels in acetylcholine receptor reconstituted into planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 78:3586–3590.PubMedCrossRefGoogle Scholar
  10. Bon, F., Lebrun, E., Gomel, J., Van Rapenbusch, R., Cartaud, J., Popot, J.-L., and Changeux, J.-P., 1982, Orientation relative des deux oligomeres constituant la forme lourde du recepteur de 1’acetylcholine chez la Torpille marbree, C.R. Acad. Sci. (Paris) [D] 295:199–204.Google Scholar
  11. Brisson, A., 1980, These Doctorat d’Etat, Grenoble, France.Google Scholar
  12. Changeux, J.-P., Bon, F., Cartaud, J., Devilliers-Thiéry, A., Giraudat, J., Heidmann, T., Holton, B., Nghiem, H.-O, Popot, J.-L., Van Rapenbusch, R., and Tzartos, S., 1983, Allosteric properties of the acetylcholine receptor protein from Torpedo marmorata, Cold Spring Harbor Symp. Quant. Biol. 48:35–52.PubMedCrossRefGoogle Scholar
  13. Claudio, T., Ballivet, M., Patrick, J., and Heinemann, S., 1983, Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor y subunit, Proc. Natl. Acad. Sci. U.S.A. 80:1111–1115.PubMedCrossRefGoogle Scholar
  14. Conti-Tronconi, B. M., and Raftery, M. A., 1982, The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties, Annu. Rev. Biochem. 51:491–530.PubMedCrossRefGoogle Scholar
  15. Criado, M., Vaz, W. L. C., Barrantes, F. J., and Jovin, T. M., 1982, Translational diffusion of acetylcholine receptor (monomelic and dimeric forms) of Torpedo marmorata studied by fluorescence recovery after photobleaching, Biochemistry 21:5750–5755.PubMedCrossRefGoogle Scholar
  16. Devilliers-Thiery, A., Giraudat, J., Bentavoulet, M., and Changeux, J. -P., 1983, Complete mRNA coding sequence of the acetylcholine binding α-subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain, Proc. Natl. Acad. Sci. U.S.A. 80:2067–2071.CrossRefGoogle Scholar
  17. Fairclough, R. H., Finer-Moore, J., Love, R. A., Kristofferson, D., Desmeules, P. J., and Stroud, R. M., 1983, Subunit organization and structure of an acetylcholine receptor, Cold Spring Harbor Symp. Quant. Biol. 48:9–20.PubMedCrossRefGoogle Scholar
  18. Froehner, S. C., 1981, Identification of exposed and buried determinants of the membrane-bound acetylcholine receptor from Torpedo californica, Biochemistry 20:4905–4915.PubMedCrossRefGoogle Scholar
  19. Guy, H. R., 1981, Structural models of the nicotinic acetylcholine receptor and its toxin-binding site, Cell. Mol. Neurobiol. 1:231–258.PubMedCrossRefGoogle Scholar
  20. Guy, H. R., 1984, A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations, Biophys. J. 45:249–261.PubMedCrossRefGoogle Scholar
  21. Heuser, J. E., and Salpeter, S. R., 1979, Organization of acetylcholine receptors in quick-frozen, deep-etched, and rotary-replicated Torpedo postsynaptic membrane, J. Cell Biol. 82:150–173.PubMedCrossRefGoogle Scholar
  22. Holtzman, E., Wide, D., Wall, J., and Karlin, A., 1982, Electron microscopy of complexes of isolated acetylcholine receptor, biotinyltoxin, and avidin, Proc. Natl. Acad. Sci. U.S.A. 79:310–314.PubMedCrossRefGoogle Scholar
  23. Hopp, T. P., and Woods, K. R., 1981, Prediction of protein antigenic determinants from amino acid sequences, Proc. Natl. Acad. Sci. U.S.A. 78:3824–3828.PubMedCrossRefGoogle Scholar
  24. Juillerat, M. A., Barkas, T., and Tzartos, S. J., 1984, Antigenic sites of the nicotinic acetylcholine receptor cannot be predicted from the hydrophilicity profile, FEBS Lett. 168:143–148.PubMedCrossRefGoogle Scholar
  25. Kistler, J., Stroud, R. M., Klymkowsky, M. W., Lalancette, R. A., and Fairclough, R. H., 1982, Structure and function of an acetylcholine receptor, Biophys. J. 37:371–383.PubMedCrossRefGoogle Scholar
  26. Klymkowsky, M. W., and Stroud, R. M., 1979, Immunospecific localization and three-dimensional structure of a membrane-bound acetylcholine receptor from Torpedo California, J. Mol. Biol. 128:319–334.PubMedCrossRefGoogle Scholar
  27. Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157:105–132.PubMedCrossRefGoogle Scholar
  28. Lindstrom, J., Tzartos, S. J., and Gullick, W., 1982, Structure and function of acetylcholine receptors studied using monoclonal antibodies, Ann. N.Y. Acad. Sci. 377:1–19.CrossRefGoogle Scholar
  29. Lindstrom, J., Tzartos, S., Gullick, W., Hochschwender, S., Swanson, L., Sargent, P., Jacob, M., and Montai, M., 1983, Use of monoclonal antibodies to study acetylcholine receptors from electric organs, muscle, and brain and the autoimmune response to receptor in myasthenia gravis, Cold Spring Harbor Symp. Quant. Biol. 48:89–99.PubMedCrossRefGoogle Scholar
  30. Lindstrom, J., Criado, M., Hochschwender, S., Fox, J. L., and Sarin, V., 1984, Immunochemical tests of acetylcholine receptor subunit models, Nature 311:573–575.PubMedCrossRefGoogle Scholar
  31. Neher, E., and Sakmann, B., 1976, Single channel currents recorded from membrane of denervated frog muscle cells, Nature 260:799–802.PubMedCrossRefGoogle Scholar
  32. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T., and Numa, S., 1982, Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence, Nature 299:793–797.PubMedCrossRefGoogle Scholar
  33. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T., and Numa, S., 1983, Primary structures of BB- and DD- subunit precursors of Torpedo-californica acetylcholine receptor deduced from cDNA sequences, Nature 301:251–255.PubMedCrossRefGoogle Scholar
  34. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence, Nature 312:121–127.PubMedCrossRefGoogle Scholar
  35. Numa, S., Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., and Kikyotani, S., 1983, Molecular structure of the nicotinic acetylcholine receptor, Cold Spring Harbor Symp. Quant. Biol. 48:57–69.PubMedCrossRefGoogle Scholar
  36. Poo, M., 1982, Rapid lateral diffusion of functional ACh receptor in embryonic muscle cell membranes, Nature 295:332–334.PubMedCrossRefGoogle Scholar
  37. Raftery, M. A., Hunkapiller, M. W., Strader, C. D., and Hood, L. E., 1980, Acetylcholine receptor: Complex of homologous subunits, Science 208:1454–1457.PubMedCrossRefGoogle Scholar
  38. Reynolds, J. A., and Karlin, A., 1978, Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica, Biochemistry 17:2035–2038.PubMedCrossRefGoogle Scholar
  39. Sabatini, D. D., Kreibich, G., Morimoto, T., and Adesnik, M., 1982, Mechanisms for the incorporation of proteins in membranes and organelles, J. Cell. Biol. 92:1–22.PubMedCrossRefGoogle Scholar
  40. Saffman, P. G., and Delbrück, M., 1975, Brownian movement in biological membranes, Proc. Natl. Acad. Sci. U.S.A. 72:3111–3113.PubMedCrossRefGoogle Scholar
  41. St. John, P. A., Froehner, S. C., Goodenough, D. A., and Cohen, J. B., 1982, Nicotinic postsynaptic membranes from Torpedo: Sidedness, permeability to macromolecules, and topography of major polypeptides, J. Cell. Biol. 92:333–342.CrossRefGoogle Scholar
  42. Sator, V., Gonzalez-Ros, J. M., Calvo Fernandez, P., and Martinez-Carrion, M., 1979, Pyrenesulfonyl azide: A marker of acetylcholine receptor subunits in contact with membrane hydrophobic environment, Biochemistry 18:1200–1206.PubMedCrossRefGoogle Scholar
  43. Strader, C.D., and Raftery, M. A., 1980, Topographic studies of Torpedo acetylcholine receptor subunits as a transmembrane complex, Proc. Natl. Acad. Sci. U.S.A. 77:5807–5811.PubMedCrossRefGoogle Scholar
  44. Sumikawa, K., Houghton, M., Smith, J. C., Bell, L., Richards, B. M., and Barnard, E.A., 1982, The molecular cloning and characterization of cDNA coding for the α subunit of the acetylcholine receptor, Nucleic Acids Res. 10:5809–5822.PubMedCrossRefGoogle Scholar
  45. Tank, D. W., Wu, E.-S., and Webb, W. W., 1982, Enhanced molecular diffusibility in muscle membrane blebs: Release of lateral constraints, J. Cell Biol. 92:207–212.PubMedCrossRefGoogle Scholar
  46. Tarrab-Hazdai, R., Bercovici, T., Goldfarb, V., and Gitler, C., 1980, Identification of the acetylcholine receptor subunit in the lipid bilayer, J. Biol. Chem. 155:1204–1209.Google Scholar
  47. Wise, D. S., Wall, J., and Karlin, A., 1981, Relative locations of the β and δ chains of the acetylcholine receptor determined by electron microscopy of isolated receptor trimer, J. Biol. Chem. 256:12624–12627.PubMedGoogle Scholar
  48. Zingsheim, H. P., Neugebauer, D.-C., Barrantes, F. J., and Frank, J., 1980, Structural details of membrane-bound acetylcholine receptor from Torpedo marmorata, Proc. Natl. Acad. Sci. U.S.A. 77:952–956.PubMedCrossRefGoogle Scholar
  49. Zingsheim, H. P., Neugebauer, D.-C., Frank, J., Hanicke, W., and Barrantes, F. J., 1982a, Dimeric arrangement and structure of the membrane-bound acetylcholine receptor studied by electron microscopy, EMBO J. 1:541–547.PubMedGoogle Scholar
  50. Zingsheim, H. P., Barrantes, F. J., Frank, J., Hanicke, W., and Neugebauer, D.-C, 1982b, Direct structural localization of two toxin-recognition sites on an ACh receptor protein, Nature 299:81–84.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Francisco J. Barrantes
    • 1
  1. 1.Instituto de Investigaciones BioquimicasUniversidad National del SurBahia BlancaArgentina

Personalised recommendations