Advertisement

Neurotrophic Effects of in Vitro Innervation of Cultured Muscle Cells. Modulation of Ca2+-Activated K+ Conductances

  • Benjamin A. Suarez-Isla
  • Stanley I. Rapoport
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)

Abstract

The trophic influence of nerve on muscle is expressed as several complex changes of the muscle plasma membrane (McArdle, 1983). Muscle denervation studies (Luco and Eyzaguirre, 1955; Thesleff, 1974) showed that cutting of the nerve decreased the membrane resting potential, increased the specific membrane resistance, and induced the appearance of hyperpolarizing afterpotentials. Denervation also decreases the sensitivity to blockage by tetrodotoxin of the action potential mechanism (Thesleff, 1974) and promotes the insertion of acetylcholine receptors into extra-junctional regions (Berg and Hall, 1975).

Keywords

Spinal Cord Neuron Neurotrophic Effect Muscle Innervation Propagate Action Potential Trophic Influence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albuquerque, E. X., and Mclsaac, R. J., 1970, Fast and slow mammalian muscle after denervation, Exp. Neurol. 26:183–202.PubMedCrossRefGoogle Scholar
  2. Barrett, J. N., Barrett, E. F., and Dribin, L. B., 1981, Calcium-dependent slow potassium conductance in rat skeletal myotubes, Dev. Biol. 82:258–266.PubMedCrossRefGoogle Scholar
  3. Barrett, J. N., Magleby, K. L., and Pallotta, B. S., 1982, Properties of single calcium-activated potassium channels in cultured rat muscle, J. Physiol. (Lond.) 331:211–230.Google Scholar
  4. Berg, D. K., and Hall, Z. W., 1975, Increased extrajunctional acetylcholine sensitivity produced by chronic post-synaptic neuromuscular blockade, J. Physiol. 244:659–676.PubMedGoogle Scholar
  5. Burgess, G. M., Claret, M., and Jenkinson, D. H., 1981, Effects of quinine and apamin on the Ca-dependent K permeability of mammalian hepatocytes and red cells, J. Physiol. (Lond.) 317:67–90.Google Scholar
  6. Coronado, R., and Miller, C., 1982, Conduction and block by organic cations in a K-selective channel from sarcoplasmic reticulum incorporated into planar phospholipid bilayers, J. Gen. Physiol. 79:529–547.PubMedCrossRefGoogle Scholar
  7. Cullen, M. J., Harris, J. B., Marshall, M. W., and Ward, M. W., 1975, An electrophysiological study of normal and denervated chicken latissimus dorsi muscles, J. Physiol. (Lond.) 245:371–385.Google Scholar
  8. Hamill, O. P., Marty, A., Neher, E., Sakman, B., and Sigworth, F., 1981, Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. 391:85–100.CrossRefGoogle Scholar
  9. Läuger, P., 1985, Ionic channels with conformational substates, Biophys. J. 47:581–591.PubMedCrossRefGoogle Scholar
  10. Luco, J. V., and Eyzaguirre, C., 1955, Fibrillation and hypersentivity of ACh in denervated muscle: Effect of length of degenerating nerves, J. Neurophysiol. 18:65–73.PubMedGoogle Scholar
  11. McArdle, J. J., 1983, Molecular aspects of the trophic influence of nerve on muscle, Prog. Neurobiol. 21:135–198.PubMedCrossRefGoogle Scholar
  12. Methfessel, C., and Boheim, G., 1982, The gating of single calcium-dependent potassium channels is described by an activation/blockade mechanism, Biophys. Struct. Mech. 9:355–60.CrossRefGoogle Scholar
  13. Pallotta, B. S., Magleby, K. L., and Barrett, J. N., 1981, Single channel recordings of Ca2+-activated K+ currents in rat muscle cells in culture, Nature 293:471–474.PubMedCrossRefGoogle Scholar
  14. Pennefather, P., Lancaster, B., Adams, P. R., and Nicoll, R. A., 1985, Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells, Proc. Natl. Acad. Sci. 82:3040–3044.PubMedCrossRefGoogle Scholar
  15. Romey, G., and Lazdunski, M., 1984, The coexistence in rat muscle cells of two distinct classes of Ca+2-dependent K+ channels with different pharmacological properties and different physiological functions, Biochim. Biophys. Res. Comm. 118:669–674.CrossRefGoogle Scholar
  16. Ruffolo, R. R., Jr., Eisenbarth, G. E., Thompson, J. M., and Nirenberg, M., 1979, Synapse turnover: A mechanism for acquiring synapse specificty, Proc. Nat. Acad. Sci. U.S.A. 75:2281–2285.CrossRefGoogle Scholar
  17. Singer, J. J., and Walsh, J. W., 1984, Large conductance Ca+2-activated K+ channel in smooth muscle cell membrane, Biophys. J. 45:68–70.PubMedCrossRefGoogle Scholar
  18. Schmidt, H., and Stefani, E., 1977, Action potentials in slow muscle fibres of the frog during regeneration of motor nerves, J. Physiol. 270:507–517.PubMedGoogle Scholar
  19. Suarez-Isla, B. A., and Rapoport, S. I., 1983, In vitro innervation modulates a calcium-activated potassium conductance in rat myotubes, Soc. Neurosci. Abstr. 9:22.Google Scholar
  20. Suarez-Isla, B. A., Thompson, J. M., and Rapoport, S. I., 1982, Effect of coculture and in vitro (re)innervation on the electrical membrane properties in rat myotubes, Soc. Neurosci. Abstr. 8:125.Google Scholar
  21. Suarez-Isla, B. A., Pelto, D. J., Thompson, J. M., and Rapoport, S. I., 1984, Blockers of calcium permeability inhibit neurite extension and formation of neuromuscular synapses in cell culture, Dev. Brain Res. 14:263–270.CrossRefGoogle Scholar
  22. Thesleff, S., 1974, Physiological effects of denervation of muscle, Ann. N.Y. Acad. Sci. 228:89–104.PubMedCrossRefGoogle Scholar
  23. Thompson, J. M., and Rapoport, S. I., 1982, Absence of stable retina-muscle synapses is related to absence of acetylcholine receptor aggregation factor in retina neurons, Soc. Neurosci. Abstr. 8:185.Google Scholar
  24. Vergara, C., and Latorre, R., 1983, Kinetics of Ca-activated K channels from rabbit muscle incorporated in lipid bilayers: Evidence for Ca and Ba blockade, J. Gen. Physiol. 82:543–568.PubMedCrossRefGoogle Scholar
  25. Woodhull, A. M., 1973, Ionic blockage of sodium channels in nerve, J. Gen. Physiol. 61:687–708.PubMedCrossRefGoogle Scholar
  26. Yellen, G., 1984, Ionic permation and blockage in Ca2+-activated K+ channels in bovine chromaffin cells, J. Gen. Physiol. 84:157–186.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Benjamin A. Suarez-Isla
    • 1
  • Stanley I. Rapoport
    • 1
  1. 1.Laboratory of Neurosciences, National Institute on AgingNational Institutes of HealthBethesdaUSA

Personalised recommendations