Characterization of Large-Unitary-Conductance Calcium-Activated Potassium Channels in Planar Lipid Bilayers

  • Daniel Wolff
  • Cecilia Vergara
  • Ximena Cecchi
  • Ramon Latorre
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


In this chapter we discuss the data obtained for a calcium-activated potassium channel of large unitary conductance. These channels are thought to be involved in the regulation of different cellular functions such as repetitive firing of neurons, hormonal secretion, potassium secretion in renal tubular cells, cyclic activity in smooth muscle, and others (Latorre et al., 1985).


Chromaffin Cell Channel Conductance Kinetic Scheme Closed Time Planar Lipid Bilayer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apell, H. J., Bamberg, E., and Lauger, P., 1979, Effects of surface charge on the conductance of the gramicidin channel, Biochim. Biophys. Acta 552:369–378.PubMedCrossRefGoogle Scholar
  2. Bell, J. E., and Miller, C., 1984, Effect of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum, Biophys. J. 45:279–287.PubMedCrossRefGoogle Scholar
  3. Blatz, A. L., and Magleby, K. L., 1984, Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle, J. Gen. Physiol. 84:1–22.PubMedCrossRefGoogle Scholar
  4. Cecchi, X., Wolff, D., Alvarez, O., and Latorre, R., 1985, Incorporation of Ca2+-activated K+ channels from rabbit intestinal smooth muscle sarcolemma into planar bilayers, Biophys. J. 45:38a.Google Scholar
  5. Colquhoun, D., and Hawkes, A. G., 1977, Relaxations and fluctuations of membrane currents that flow through drug operated channels, Proc. R. Soc. Lond. [Biol.] 199:231–262.CrossRefGoogle Scholar
  6. Colquhoun, D., and Hawkes, G., 1981, On the stochastic properties of single ion channels, Proc. R. Soc. Lond. [Biol] 211:205–235.CrossRefGoogle Scholar
  7. Ehrenstein, G., Blumenthal, R., Latorre, R., and Lecar, H., 1974, Kinetics of the opening and closing of individual excitability-inducing material channels in a lipid bilayer, J. Gen. Physiol. 63:707–721.PubMedCrossRefGoogle Scholar
  8. Fohlmeister, J. F., and Adelman, W. J., 1982, Periaxonal surface calcium binding and distribution of charges on the faces of squid axon potassium channels molecules, J. Membr. Biol. 70:115–123.CrossRefGoogle Scholar
  9. Guharay, F., and Sachs, F., 1984, Stretch-activated single ion channel current in tissue-cultured embryonic chick skeletal muscle, J. Physiol. (Lond.) 352:685–701.Google Scholar
  10. Krueger, B. K., French, R. J., Blaustein, M. B., and Worley, J. F., 1982, Incorporation of Ca-activated K channels from rat brain into lipid bilayers, Biophys. J. 37:170a.CrossRefGoogle Scholar
  11. Latorre, R., and Miller, C., 1983, Conduction and selectivity in potassium channels, J. Membr. Biol. 71:11–30.PubMedCrossRefGoogle Scholar
  12. Latorre, R., Vergara, C., and Hidalgo, C., 1982, Reconstitution in planar lipid bilayers of a Ca dependent K channel from transverse tubule membranes isolated from rabbit skeletal muscle, Proc. Natl. Acad. Sci. U.S.A. 79:805–809.PubMedCrossRefGoogle Scholar
  13. Latorre, R., Coronado, R., and Vergara, C., 1984, K+ channels gated by voltage and ions, Annu. Rev. Physiol. 46:485–495.PubMedCrossRefGoogle Scholar
  14. Latorre, R., Alvarez, O., Cecchi, X., and Vergara, C., 1985, Properties of reconstituted ion channels, Annu. Rev. Biophys. Biophys. Chem. 14:79–111.PubMedCrossRefGoogle Scholar
  15. Lauger, P., 1973, Ion transport through pores: A rate theory analysis, Biochim. Biophys. Acta 311:423–441.PubMedCrossRefGoogle Scholar
  16. Lauger, P., Stephan, W., and Frehland, E., 1980, Fluctuations of barrier structure in ionic channels, Biochim. Biophys. Acta 602:167–180.PubMedCrossRefGoogle Scholar
  17. Lux, H. D., Neher, E., and Marty, A., 1981, Single channel activity associated with the Ca-dependent outward current in H. pomatia, Pfluegers Arch. 389:293–295.CrossRefGoogle Scholar
  18. Magleby, K. L., and Pallota, B. S., 1983a, Calcium dependence of open and shut interval distributions from calcium-activated potassium channels in cultured rat muscle, J. Physiol. (Lond.) 344:585–604.Google Scholar
  19. Magleby, K. L., and Pallota, B. S., 1983b, Burst kinetics of single calcium-activated potassium channels in cultured rat muscle, J. Physiol. (Lond.) 344:605–623.Google Scholar
  20. Marty, A., 1981, Ca dependent K channels with large unitary conductance in chromaffin cell membranes, Nature 291:497–500.PubMedCrossRefGoogle Scholar
  21. Meech, R. W., and Standen, N. B., 1975, Potassium activation in Helix aspersa neurones under voltage clamp: A component mediated by calcium influx, J. Physiol. (Lond.) 249:211–234.Google Scholar
  22. Methfessel, C., and Boheim, G., 1982, The gating of single calcium-dependent potassium channels is described by an activation-blockade mechanism, Biophys. Struct. Mech. 9:35–60.PubMedCrossRefGoogle Scholar
  23. Moczydlowski, E., and Latorre, R., 1983, Gating kinetics of Ca-activated channels from rat muscle incorporated into planar lipid bilayers, J. Gen. Physiol. 82:511–543.PubMedCrossRefGoogle Scholar
  24. Moczydlowski, E., Alvarez, O., Vergara, C., and Latorre, R., 1985, Effect of phospholipid surface charge on the conductance and gating of a Ca-activated K channel in planar lipid bilayers, J. Membr. Biol. 83:273–282.PubMedCrossRefGoogle Scholar
  25. Pallota, B. S., Magleby, K. L., and Barret, J. N., 1981, Single channel recordings of Ca-activated K currents in rat muscle cell culture, Nature 293:471–474.CrossRefGoogle Scholar
  26. Vergara, C., 1983, Characterization of a Ca-Activated K Channel from Skeletal Muscle Membranes in Artificial Bilayers, Ph.D. disertation, Harvard University, Cambridge.Google Scholar
  27. Vergara, C., and Latorre, R., 1983, Kinetics of Ca-activated K channels from rabbit muscle incorporated into planar bilayers, J. Gen. Physiol. 82:543–563.PubMedCrossRefGoogle Scholar
  28. Vergara, C., Moczydlowski, E., and Latorre, R., 1984, Conduction, blockade and gating in a Ca-activated K channel incorporated into planar lipid bilayers, Biophys. J. 45:73–76.PubMedCrossRefGoogle Scholar
  29. Walsh, A. V., and Singer, J. J., 1983, Identification and characterization of a Ca-activated K channel in freshly dissociated vertebrate smooth muscle cells using the patch clamp technique, Biophys. J. 41:56a.Google Scholar
  30. Wilson, D. L., Morimoto, K., Tsuda, Y., and Brown, A. M., 1983, Interaction between calcium ions and surface charge as it relates to calcium currents, J. Membr. Biol. 72:117–130.PubMedCrossRefGoogle Scholar
  31. Wolff, D., Cecchi, X., Naranjo, D., Alvarez, O., and Latorre, R., 1985, Cation selectivity and Cs+ blockade in a Ca-activated K channel from rabbit intestinal smooth muscle, Biophys. J. 47:386a.Google Scholar
  32. Wong, B. S., Lecar, H., and Adler, M., 1982, Single Ca-dependent K channels in clonal anterior pituitary cells, Biophys. J. 39:313–317.PubMedCrossRefGoogle Scholar
  33. Woodhull, A. M., 1973, Ionic blockade of sodium channel in nerve, J. Gen. Physiol. 61:687–798.PubMedCrossRefGoogle Scholar
  34. Yellen, G., 1984a, Ionic permeation and blockade in Ca-activated K channels of bovine chromaffin cells, J. Gen. Physiol. 84:157–186.PubMedCrossRefGoogle Scholar
  35. Yellen, G., 1984b, Relief of sodium block of Ca-activated K channels by external cations, J. Gen. Physiol. 84:187–199.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Daniel Wolff
    • 1
    • 2
  • Cecilia Vergara
    • 1
    • 2
  • Ximena Cecchi
    • 1
    • 2
  • Ramon Latorre
    • 1
    • 2
  1. 1.Departmento de Bíología, Facultad de CienciasUniversidad de ChileSantiagoChile
  2. 2.Centro de Estudios Científicos de SantiagoSantiagoChile

Personalised recommendations