Ionic Channels in the Plasma Membrane of Sea Urchin Sperm

  • A. Darszon
  • J. García-Soto
  • A. Liévano
  • J. A. Sánchez
  • A. D. Islas-Trejo
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


The exchange of information between a cell and its environment is frequently mediated by ionic movements through the plasma membrane. The physiology of sea urchin sperm is a representative case in which this phenomenon occurs. For instance, when these cells are spawned into sea water, their motility and respiration activate (Ohtake, 1976; Nishioka and Cross, 1978; Christen et al., 1982). This activation is mostly dependent on the transport of Na+ and H+ through the plasma membrane (Nishioka and Cross, 1978). The sperm acrosome reaction, a prerequisite for egg fertilization, is also modulated by ionic fluxes (Schakmann et al., 1978). This reaction in sea urchin sperm consists of the exocytosis of the acrosomal vesicle located at the anterior region of the sperm head (Dan, 1952; Summers et al., 1975) and leads to the exposure of a protein required for sperm-egg binding (Vacquier and Moy, 1977; Glabe and Lennarz, 1979) and of lytic enzymes that digest the coat of the egg (Levine and Walsh, 1979; Green and Summers, 1980). Also during the process, the intracellular cyclic nucleotides increase (Garbers and Kopf, 1980), and an actin-containing acrosomal tubule is formed (Tilney et al., 1973).


Acrosome Reaction Sperm Head Sperm Membrane Sperm Plasma Membrane Jelly Coat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blatz, A. L., and Magleby, K. L., 1983, Single voltage-dependent chloride-selective channels of large conductance in cultured rat muscle, Biophys. J. 43:237–240.PubMedCrossRefGoogle Scholar
  2. Christen, R., Schackmann, R. W., and Shapiro, B. M., 1982, Elevation of intracellular pH activates respiration and motility of sperm of the sea urchin, Strongylocentrotus pur-puratus, J. Biol. Chem. 257:14881–14890.Google Scholar
  3. Collins, F., and Epel, D., 1977, The role of calcium ions in the acrosome reaction of sea urchin sperm, Exp. Cell Res. 106:211–222.PubMedCrossRefGoogle Scholar
  4. Coronado, R., and Latorre, R., 1983, Phospholipid bilayers made from monolayers on patch-clamp pipettes, Biophys. J. 43:231–236.PubMedCrossRefGoogle Scholar
  5. Cross, N., 1983, Isolation and electrophoretic characterization of the plasma membrane of seaurchin sperm, J. Cell Sci. 59:13–25.PubMedGoogle Scholar
  6. Dan, J., 1952, Studies on the acrosome. I. Reaction to egg water and other stimuli, Biol. Bull. 103:54–66.CrossRefGoogle Scholar
  7. Dan, J., 1954, Studies on the acrosome. II. Effect of calcium deficiency, Biol. Bull. 107:335–349.CrossRefGoogle Scholar
  8. Darszon, A., 1983, Strategies in the reassembly of membrane proteins into lipid bilayer systems and their functional assay, J. Bioenerg. Biomembr. 15:321–334.PubMedCrossRefGoogle Scholar
  9. Darszon, A., Gould, M., de De la Torre, L., and Vargas, I., 1984a, Response of isolated sperm plasma membranes from sea urchins to egg jelly, Eur. J. Biochem. 144:515–522.PubMedCrossRefGoogle Scholar
  10. Darszon, A., Liévano, A., and Sánchez, J., 1984b, Single channel recording from bilayer derived from isolated sea urchin plasma membranes, Biophys. J. 45:308a.Google Scholar
  11. Decker, G. L., Joseph, D. B., and Lennarz, W. J., 1976, A study of factors involved in induction of the acrosome reaction in sperm of the sea urchin Arbacia punctulata, Dev. Biol. 53:115–125.CrossRefGoogle Scholar
  12. Epel, D., 1978, Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes, Curr. Top. Dev. Biol. 12:185–246.PubMedCrossRefGoogle Scholar
  13. Ferry, D. R., and Glossmann, H., 1982, Identification of putative calcium channels in skeletal muscle microsomes, FEBS Lett. 148:331–337.PubMedCrossRefGoogle Scholar
  14. Garbers, D. L., and Kopf, G. S., 1980, The regulation of spermatozoa by calcium and cyclic nucleotides, Adv. Cyclic Nucleotide Res. 13:251–306.PubMedGoogle Scholar
  15. Garcfa-Soto, J., and Darszon, A., 1984, Effect of Ca2+- antagonists on the Ca2+ uptake associated with the acrosome reaction of sea urchin sperm, Biophys. J. 45:40a.CrossRefGoogle Scholar
  16. Garcia-Soto, J., and Darszon, A., 1985, High pH-induced acrosome reaction and Ca2+ uptake in sea urchin sperm suspended in Na+-free sea water, Dev. Biol. 110:338–345.PubMedCrossRefGoogle Scholar
  17. Garcia-Soto, J., de De la Torre, L., Vargas, I., and Darszon, A., 1984, Response of isolated sea urchin sperm head plasma membranes to egg jelly, in 8th International Biophysics Congress (Bristol, U.K.), I.U.P.A.B. Abstracts, p. 289.Google Scholar
  18. Glabe, C. G., and Lennarz, W. J., 1979, Species-specific sperm adhesion in sea urchins. A quantitative investigation of binding-mediated egg agglutination, J. Cell Biol. 83:595–604.PubMedCrossRefGoogle Scholar
  19. Gould, R. J., Murphy, K. M. M., and Snyder, S. H., 1982, [3H]Nitrendipine-labeled calcium channels discriminated inorganic calcium agonists and antagonists, Proc. Natl. Acad. Sci. U.S.A. 79:3656–3660.PubMedCrossRefGoogle Scholar
  20. Green, J. D., and Summers, R. G., 1980, Ultrastructural demonstration of trypsin-like protease in acrosome of sea urchin sperm, Science 209:398–400.PubMedCrossRefGoogle Scholar
  21. Hamill, O. P., Marty, A., Neher, E., Sackmann, B., and Sigworth, F., 1981, Improved patch-clamp techniques for high resolution recordings from cells and cell-free membrane patches, Pfluegers Arch. 391:85–100.CrossRefGoogle Scholar
  22. Wilmsen, U., Methfessel, C., Hanke, W., and Boheim, G., 1983, Channel current fluctuations studies with solvent-free bilayers using Neher-Sackmann pipettes, in Physical Chemistry of Transmembrane Ion Motions (G. Spach, ed.), Elsevier/North-Holland, Amsterdam pp. 479–485.Google Scholar
  23. Jacobson, B. S., 1977, Isolation of plasma membrane from eukaryotic cells on polylysine-coated Polyacrylamide beads, Biochim. Biophys. Acta 471:331–335.PubMedCrossRefGoogle Scholar
  24. Kohlhardt, M., and Fleckenstein, A., 1977, The inhibition of the slow sodium inward current by nifedipine in mammalian ventricular myocardium, Naunyn Schmiedebergs Arch. Pharmacol. 298:267–272.PubMedCrossRefGoogle Scholar
  25. Kopf, G. S., and Garbers, D. L., 1980, Calcium and fucose-sulfate rich polymer regulate sperm cyclic nucleotide metabolism and the acrosome reaction, Biol. Reprod. 22:1118–1126.Google Scholar
  26. Lopo, A. C., and Vacquier, V. D., 1980, Antibody to sperm surface glycoprotein inhibits the egg jelly-induced acrosome reaction of sea urchin sperm, Dev. Biol. 79:325–333.PubMedCrossRefGoogle Scholar
  27. Latorre, R., and Miller, C., 1983, Conduction and selectivity in potassium channels, J. Membr. Biol. 71:11–30.PubMedCrossRefGoogle Scholar
  28. Lee, U.C., Johnson, C., and Epel, D., 1983, Changes in internal pH associated with initiation of motility and acrosome reaction of sea urchin sperm, Dev. Biol. 95:31–45.PubMedCrossRefGoogle Scholar
  29. Levine, A. E., and Walsh, K. A., 1979, Involvement of an acrosin-like enzyme in the acrosome reaction of sea urchin sperm, Dev. Biol. 72:126–137.PubMedCrossRefGoogle Scholar
  30. Liévano, A., Sanchez, J., and Darszon, A., 1985, Single channel activity of bilayers derived from sea urchin sperm plasma membranes formed at the tip of a patch electrode, Dev. Biol. 112:253–257.PubMedCrossRefGoogle Scholar
  31. Nishioka, D., and Cross, N., 1978, The role of external Na+ in sea urchin fertilization, in Cell Reproduction (E. R. Dirksen, D. Prescott, and C. F. Fox, eds.), Academic Press, New York, pp. 403–413.Google Scholar
  32. Ohtake, H., 1976, Respiratory behaviour of sea-urchin spermatozoa. Effect of pH and egg water on the respiratory rate, J. Exp. Zool. 198:303–312.PubMedCrossRefGoogle Scholar
  33. Plotek, Y., and Atlas, D., 1983, Characterization of benextramine as an irreversible α-adrenergic blocker and as a blocker of potassium-activated calcium channels, Eur. J. Biochem. 133:539–544.PubMedCrossRefGoogle Scholar
  34. Schackmann, R. W., and Shapiro, B. M., 1981, A partial sequence of ionic changes associated with the acrosome reaction of Strongylocentrotus purpuratus, Dev. Biol. 81:145–154.PubMedCrossRefGoogle Scholar
  35. Schackmann, R. W., Eddy, E. M., and Shapiro, B. M., 1978, The acrosome reaction of Strongylocentrotus purpuratus sperm. Ion requirements and movements, Dev. Biol. 65:483–495.PubMedCrossRefGoogle Scholar
  36. Schackmann, R. W., Christen, R., and Shapiro, B. M., 1981, Membrane potential depolarization an increased intracellular pH accompanying the acrosome reaction of sea urchin sperm, Proc. Natl. Acad. Sci. U.S.A. 78:6066–6070.PubMedCrossRefGoogle Scholar
  37. Schindler, H. G., 1979, Exchange and interactions between lipid layers at the surface of a liposome solutions, Biochim. Biophys. Acta 555:316–336.PubMedCrossRefGoogle Scholar
  38. Schindler, H. G., and Rosenbush, J., 1978, Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 75:3751–3755.PubMedCrossRefGoogle Scholar
  39. Schwarz, W., Neumke, B., and Palade, P. T., 1981, K-current fluctuations in inward-rectifying channels of frog skeletal muscle, J. Membr. Biol. 63:85–92.PubMedCrossRefGoogle Scholar
  40. SeGall, G. K., and Lennarz, W. J., 1979, Chemical characterization of the component of the egg jelly coat from sea urchin eggs responsible for induction of the acrosome reaction, Dev. Biol. 71:33–48.PubMedCrossRefGoogle Scholar
  41. SeGall, G. K., and Lennarz, W. J., 1981, Jelly coat and induction of the acrosome reaction in echinoid sperm, Dev. Biol. 86:87–93.PubMedCrossRefGoogle Scholar
  42. Stanfield, P. R., 1983, Tetraethylammonium ions and the potassium permeability of excitable cells, Rev. Physiol. Biochem. Pharmacol. 97:1–67.PubMedCrossRefGoogle Scholar
  43. Suárez-Isla, B., Wan, K., Lindstrom, J., and Montai, M., 1983, Single-channel recordings from purified acetylcholine receptors reconstituted in bilayers formed at the tip of patch pippets, Biochemistry 22:2319–2323.PubMedCrossRefGoogle Scholar
  44. Summers, R. G., Hylander, B. L., Colwin, L. H., and Colwin, A. L., 1975, The functional anatomy of the echinoderm spermatozoon and its interaction with the egg at fertilization, Am.Zool. 15:523–551.Google Scholar
  45. Tan, K. N., and Tashjian, A. J., Jr., 1984, Voltage-dependent calcium channels in pituitary cells in culture. I. Characterization by 45Ca2+ fluxes, J. Biol. Chem. 259:418–426.PubMedGoogle Scholar
  46. Tilney, L. G., Hatano, S., Ishikawa, H., and Mooseker, M. S., 1973, The polymerization of actin: Its role in the generation of the acrosomal process of certain echinoderm sperm, J. Cell Biol. 59:109–126.PubMedCrossRefGoogle Scholar
  47. Ulbricht, W., Wagner, H. H., and Schmidtmayer, J., 1982, Effects of aminopyridines on potassium currents of the model membrane, in Aminopyridines and Similarly Acting Drugs: Effects on Nerves, Muscles and Synapses. (Lechat, P. et al., eds.) Pergamon, Oxford, pp. 29–41.Google Scholar
  48. Vacquier, V. D., and Moy, G. W., 1977, Isolation of binding: The protein responsible for adhesion of sperm to sea urchin eggs, Proc. Natl. Acad. Sci. U.S.A. 74:2456–2460.PubMedCrossRefGoogle Scholar
  49. Wilmsen, U., Methfessel, C., Hanke, W., and Boheim, G., 1982, in Phisico Chimie des Mouvements Ioniques Jransmembranaires, Ecole Nationale Superieure de Chimie, Paris, p. 50.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • A. Darszon
    • 1
  • J. García-Soto
    • 1
  • A. Liévano
    • 1
  • J. A. Sánchez
    • 2
  • A. D. Islas-Trejo
    • 1
  1. 1.Departmento de BioquímicaCentro de Investigatión y de Estudios Avanzados del I. P. N.MéxicoMéxico
  2. 2.Departmentos de Bioquímica y FarmacologíaCentro de Investigación y de Estudios Avanzados del I.P.N.MéxicoMéxico

Personalised recommendations