From Brain to Bilayer

Sodium Channels from Rat Neurons Incorporated into Planar Lipid Membranes
  • Robert J. French
  • Bruce K. Krueger
  • Jennings F. WorleyIII
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


Contemporary studies on the molecular basis of membrane excitability spring from the pivotal conclusion reached by Hodgkin and Huxley (1952b) that the currents that generate an action potential must flow through a sparse array of voltage-sensitive conducting sites in the plasmalemma. They further showed that the squid axon membrane possessed two functionally distinct transmembrane pathways, which were selective for sodium and potassium ions, respectively (Hodgkin and Huxley, 1952a). These are the voltage-gated sodium and potassium “channels,” and they are, indeed, discrete macromolecules that form hydrophilic pores through the membrane (Hille, 1984).


Sodium Channel Planar Lipid Bilayer Apparent Dissociation Constant Sparse Array Planar Bilayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnew, W. S., 1984, Voltage-regulated sodium channel molecules, Annu. Rev. Physiol. 46:517–530.PubMedCrossRefGoogle Scholar
  2. Andersen, O. S., 1983, Ion movement through gramicidin A channels. Single-channel measurements at very high potentials, Biophys. J. 41:119–133.PubMedCrossRefGoogle Scholar
  3. Barchi, R. L., 1982, Biochemical Studies of the excitable membrane sodium channel, Int. Rev. Neurobiol. 23:69–101.PubMedCrossRefGoogle Scholar
  4. Barchi, R. L., 1983, Protein components of the purified sodium channel from rat skeletal muscle sarcolemma, J. Neurochem. 40:1377–1385.PubMedCrossRefGoogle Scholar
  5. Bean, R. C., Shepherd, W. C., Chan, H., and Eichner, J., 1969, Discrete conductance fluctuations in lipid bilayer protein membranes, J. Gen. Physiol. 53:741–757.PubMedCrossRefGoogle Scholar
  6. Bell, J. E., and Miller, C., 1984, Effects of phospholipid surface charge on ion conduction in the K+ channel of the sarcoplasmic reticulum, Biophys. J. 45:279–287.PubMedCrossRefGoogle Scholar
  7. Catterall, W. A., 1984, The molecular basis of neuronal excitability, Science 223:653–661.PubMedCrossRefGoogle Scholar
  8. Ehrenstein, G., Lecar, H., and Nossal, R., 1970, The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material, J. Gen. Physiol. 55:119–133.PubMedCrossRefGoogle Scholar
  9. Ehrenstein, G., Blumenthal, R., Latorre, R., and Lecar, H., 1974, Kinetics of opening and closing of individual excitability-inducing material channels in a lipid bilayer, J. Gen. Physiol. 63:707–721.PubMedCrossRefGoogle Scholar
  10. French, R. J., Worley, J. F., III, and Krueger, B. K., 1984, Voltage-dependent block by saxitoxin of voltage-dependent sodium channels incorporated into planar lipid bilayers, Biophys. J. 45:301–310.PubMedCrossRefGoogle Scholar
  11. Green, W. N., Weiss, L. B., and Andersen, O. S., 1984, Voltage and Na+-dependent tetrodotoxin (TTX) block of batrachotoxin (BTX)-modified sodium channels, Biophys. J. 45:68a.CrossRefGoogle Scholar
  12. Hartshorne, R. P., and Catterall, W. A., 1984, The sodium channel from rat brain. Purification and subunit composition, J. Biol. Chem. 259:1667–1675.PubMedGoogle Scholar
  13. Hartshorne, R. P., Keller, B. U., Talvenheimo, J. A., Catterall, W. A., and Montai, M., 1985, Functional reconstitution of the purified brain sodium channel in planar lipid bilf.yers, Proc. Natl. Acad. Sci. U.S.A. 82:240–244.PubMedCrossRefGoogle Scholar
  14. Hille, B., 1975, Ionic selectivity, saturation, and block in sodium channels. A four-barrier model, J. Gen. Physiol. 66:535–560.PubMedCrossRefGoogle Scholar
  15. Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  16. Hodgkin, A. L., and Huxley, A. F., 1952a, Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J. Physiol. (Lond.) 116:449–472.Google Scholar
  17. Hodgkin, A. L., and Huxley, A. F., 1952b, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (Lond.) 117:500–544.Google Scholar
  18. Horn, R., Vandenberg, C. A., and Lange, K., 1984, Statistical analysis of single sodium channels. Effects of N-bromoacetamide, Biophys. J. 45:323–335.PubMedCrossRefGoogle Scholar
  19. Kraner, S. D., Tanaka, J. C., and Barchi, R. L., 1985, Purification and functional reconstitution of the voltage-sensitive sodium channel from rabbit T-tubular membranes, J. Biol. Chem. 260:6341–6347.PubMedGoogle Scholar
  20. Krueger, B. K., and Blaustein, M. P., 1980, Sodium channels in presynaptic nerve terminals. Regulation by neurotoxins, J. Gen. Physiol. 76:287–313.PubMedCrossRefGoogle Scholar
  21. Krueger, B. K., Ratzlaff, R. W., Strichartz, G. R., and Blaustein, M. P., 1979, Saxitoxin binding to synaptosomes, membranes, and solubilized binding sites from rat brain, J. Membr. Biol. 50:287–310.PubMedCrossRefGoogle Scholar
  22. Krueger, B. K., French, R. J., Blaustein, M. B., and Worley, J. F., III, 1982, Incorporation of calcium-activated K+-channels from rat brain into planar lipid bilayers, Biophys. J. 37:170a.CrossRefGoogle Scholar
  23. Krueger, B. K., Worley, J. F., III, and French, R. J., 1983, Single sodium channels from rat brain incorporated into planar lipid bilayers, Nature 303:172–175.PubMedCrossRefGoogle Scholar
  24. Labarca, P., and Miller, C., 1981, A K+-selective three-state channel from fragmented sarcoplasmic reticulum of frog leg muscle, J. Membr. Biol. 61:31–38.PubMedCrossRefGoogle Scholar
  25. Latorre, R., Vergara, C., and Hidalgo, C., 1982, Reconstitution in planar bilayers of a Ca2+- dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle, Proc. Natl Sci. U.S.A. 79:805–809.CrossRefGoogle Scholar
  26. Marty, A., 1981, Ca-dependent K channels with large unitary conductance in chromaffin cell membranes, Nature 291:497–500.PubMedCrossRefGoogle Scholar
  27. Miller, C., 1978, Voltage-gated cation channel from fragmented sarcoplasmic reticulum: Steady-state electrical properties, J. Membr. Biol. 40:1–23.PubMedGoogle Scholar
  28. Miller, C., 1984, Integral membrane channels: Studies in model membranes, Physiol. Rev. 63:1209–1242.Google Scholar
  29. Moczydlowski, E., Garber, S., and Miller, C., 1984a, Batrachotoxin-activated Na+ channels in planar lipid bilayers; competition of tetrodotoxin block by Na+, J. Gen. Physiol. 84:665–686.PubMedCrossRefGoogle Scholar
  30. Moczydlowski, E., Hall, S., Garber, S., Strichartz, G. R., and Miller, C., 1984b, Voltage dependent blockade of muscle Na+ channels by guanidinium toxins: Effect of toxin charge, J. Gen. Physiol., 84:687–704.PubMedCrossRefGoogle Scholar
  31. Montal, M., and Mueller, P., 1972, Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties, Proc. Natl. Acad.-Sci. U.S.A. 69:3561–3566.PubMedCrossRefGoogle Scholar
  32. Mueller, P., 1975, Membrane excitation through voltage-induced aggregation of channel precursors, Ann. N.Y. Acad. Sci. 264:247–264.PubMedCrossRefGoogle Scholar
  33. Neher, E., and Sakmann, B., 1976, Single-channel currents recorded from the membrane of frog muscle fibers, Nature 260:799–802.PubMedCrossRefGoogle Scholar
  34. Nelson, M. T., French, R. J., and Krueger, B. K., 1984, Voltage-dependent calcium channels from brain incorporated into planar lipid bilayers, Nature 308:77–80.PubMedCrossRefGoogle Scholar
  35. Nelson, N., Anholt, R., Lindstrom, J., and Montai, M., 1981, Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 77:3057–3061.CrossRefGoogle Scholar
  36. Pallotta, B. S., Magleby, K. L., and Barrett, J. N., 1981, Single channel recordings of Ca2+- activated K+ currents in rat muscle cell culture, Nature 293:471–474.PubMedCrossRefGoogle Scholar
  37. Ohmori, H., Yoshida, S., and Hagiwara, S., 1981, Single K+ channel currents of anomalous rectification in cultured rat myotubes, Proc. Natl. Acad. Sci. U.S.A. 78:4960–4964.PubMedCrossRefGoogle Scholar
  38. Quandt, F. N., and Narahashi, T., 1982, Modification of single Na+ channels by batrach-otoxin, Proc. Natl. Acad. Sci. U.S.A. 79:6732–6736.PubMedCrossRefGoogle Scholar
  39. Rosenberg, R. L., Tomiko, S., and Agnew, W. S., 1984a, Reconstitution of neurotoxin-modulated transport by the voltage-regulated sodium channel from the electroplax of Electrophorus electricus, Proc. Natl. Acad. Sci. U.S.A. 81:1239–1243.CrossRefGoogle Scholar
  40. Rosenberg, R. L., Tomiko, S., and Agnew, W. S., 1984b, Single channel properties of voltage-regulated Na channel isolated from the electroplax of Electrophorus electricus, Proc. Natl. Acad. Sci. U.S.A. 81:5594–5598.CrossRefGoogle Scholar
  41. Schindler, H., and Quast, U., 1981, Functional acetylcholine receptor from Torpedo marmorata in planar membranes, Proc. Natl. Acad. Sci. U.S.A. 77:3052–3056.CrossRefGoogle Scholar
  42. Sigworth, F. J., and Neher, E., 1980, Single sodium channel currents observed in cultured rat muscle cells, Nature 287:447–449.PubMedCrossRefGoogle Scholar
  43. Tamkun, M. M., and Catterall, W. A., 1980, Ion flux studies of voltage-sensitive sodium channels in synaptic nerve-ending particles, Mol. Pharmacol. 19:78–86.Google Scholar
  44. Tamkun, M. M., Talvenheimo, J. A., and Catterall, W. A., 1984, The sodium channel from rat brain. Reconstitution of neurotoxin-activated ion flux and scorpion toxin binding from purified components, J. Biol. Chem. 259:1676–1688.PubMedGoogle Scholar
  45. Tanaka, J. C., Eccleston, J. F., and Barchi, R. L., 1983, Cation selectivity characteristics of the reconstituted voltage-dependent sodium channel from rat skeletal muscle sarcolemma, J. Biol. Chem. 258:7519–7526.PubMedGoogle Scholar
  46. Taylor, R. E., Armstrong, C. M., and Bezanilla, F., 1976, Block of sodium channels by external calcium ions, Biophys. J. 16:27a.CrossRefGoogle Scholar
  47. Weigele, J. B., and Barchi, R. L., 1978, Analysis of saxitoxin binding in isolated rat syn-aptosomes using a rapid filtration assay, FEBS Lett. 91:310–314.PubMedCrossRefGoogle Scholar
  48. Weiss, L. B., Green, W. N., and Andersen, O. S., 1984, Single channel studies on the gating of batrachotoxin (BTX)-modified sodium channels in lipid bilayers, Biophys. J. 45:67a.Google Scholar
  49. White, M. M., and Miller, C., 1979, A voltage-gated anion channel from the electric organ of Torpedo californica, J. Biol. Chem. 254:10161–10166.PubMedGoogle Scholar
  50. Woodhull, A. M., 1973, Ionic block of sodium channels in nerve, J. Gen. Physiol. 61:687–708.PubMedCrossRefGoogle Scholar
  51. Yamamoto, D., Yeh, J. Z., and Narahashi, T., 1984, Voltagedependent calcium block of normal and tetramethrin-modified sodium channels, Biophys. J. 45:337–344.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Robert J. French
    • 1
  • Bruce K. Krueger
    • 1
  • Jennings F. WorleyIII
    • 1
  1. 1.University of Maryland School of MedicineBaltimoreUSA

Personalised recommendations