Channels in Kidney Epithelial Cells

  • Sandra Guggino
Part of the Series of the Centro de Estudios Científicos de Santiago book series (SCEC)


Since the first conclusive demonstration of the presence of channels in epithelia, in particular the demonstration of amiloride-sensitive sodium channels involved in active Na+ reabsorption across the apical membrane of the frog skin (Lindemann and Van Driessche, 1976), the question arose as to how much of the conductive properties of epithelia are controlled by ion channels. The advent of the patch-clamp technique allowed a new way of investigating this problem in epithelial cells from kidney. Thus, by use of the patch-clamp technique on isolated kidney tubules and on cultured kidney cell lines, a comparison can be made between the conductance properties of the membranes and the properties of the ion channels found in the same segments. We can then begin to assess what components of the conductive properties of these cells are accounted for by channel activity.


Apical Membrane Chromaffin Cell Apical Cell Membrane Frog Skin Distal Nephron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, P. R., Constantin, A., Brown, D. A., and Clark, R. B., 1982, Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurons, Nature 296:746–749.PubMedCrossRefGoogle Scholar
  2. Atwater, L, Rosario, L., and Rojas, E., 1983, Properties of the Ca-activated K+ channel in pancreatic β -cells, Cell Calcium 4:451–461.PubMedCrossRefGoogle Scholar
  3. Field, M. J., and Giebisch, G. H., 1985, Hormonal control of potassium excretion, Kidney Int. 27:379–387.PubMedCrossRefGoogle Scholar
  4. Field, M. J., Stanton, B. A., and Giebisch, G. H., 1984, Influence of ADH on renal potassium handling: A micropuncture and microperfusion study, Kidney Int. 25:502–511.PubMedCrossRefGoogle Scholar
  5. Gardos, G., 1958, The function of calcium in the potassium permeability of human erythrocytes, Biochem. Biophys. Acta 30:653–654.PubMedCrossRefGoogle Scholar
  6. Gorman, A. L. F., Herman, A., and Thomas, M. V., 1981, Intracellular calcium and the control of neuronal pacemaker activity, Fed. Proc. 40:2233–2239.PubMedGoogle Scholar
  7. Green, N., Algren, A., Hoyer, J., Triche, T., and Burg, M., 1985, Differentiated lines of cells from rabbit renal medullary thick ascending limb cells grown on amnion, Am. J. Physiol. 249(18):C97-C104.PubMedGoogle Scholar
  8. Greger, R., and Schlatter, E., 1983, Properties of the lumen membrane of the cortical thick ascending limb of Henle’s loop of rabbit kidney, Pfluegers Arch. 396:315–324.CrossRefGoogle Scholar
  9. Guggino, W. B., Stanton, B. A., and Giebisch, G., 1982, Electrical properties of isolated early distal tubule of the Amphiuma kidney, Fed. Proc. 41:1597.Google Scholar
  10. Guggino, S. E., Suarez-Isla, B. A., Guggino, W. B., Green, N., and Sacktor, B., 1984, Ba++ sensitive, Ca++ activated K+ channels in cultured rabbit medullary thick ascending limb cells (MTAL) and cultured chick kidney cells (CK), Kidney Intern. 27(1):309.Google Scholar
  11. Guggino, S. E., Suarez-Isla, B. A., Guggino, W. B., Green, N., and Sacktor, B., 1985, The influence of barium on apical membrane potentials and potassium channel activity in cultured rabbit medullary thick ascending limb cells (MTAL). Fed. Proc. 44(3):443.Google Scholar
  12. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. I., 1981, Improved patch clamp technique for high resolution current recording from cells and cell free membrane patches, Pfluegers Arch. 391:85–100.CrossRefGoogle Scholar
  13. Handler, J. S., and Orloff, J., 1981, Antidiuretic hormone, Annu. Rev. Physiol. 43:611–624.PubMedCrossRefGoogle Scholar
  14. Hebert, S. C., and Andreoli, T. E., 1984a, Control of NaCl transport in the thick ascending limb, Am. J. Physiol. 246:F745–F756.Google Scholar
  15. Hebert, S. C., and Andreoli, T. E., 1984b, Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: 11. Determinants of ADH-mediated increases in transepithelial voltage and net Cl- absorption, J. Membr. Biol. 80:221–233.CrossRefGoogle Scholar
  16. Hebert, S. C., Friedman, P. A., and Andreoli, T. E., 1984, Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: 1. ADH increases transcellular conductance pathways, J. Membr. Biol. 80:201–219.PubMedCrossRefGoogle Scholar
  17. Henry, H. L., 1979, Regulation of the hydroxylation of 25-OH vitamin D3 in vivo and in primary cultures of chick kidney cells, J. Biol. Chem. 254(8):2722–2729.PubMedGoogle Scholar
  18. Hunter, M., Lopes, A. G., Boulpaep, E. L., and Giebisch, G., 1984, Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules, Proc. Natl. Acad. Sci. U.S.A. 81:4237–4239.PubMedCrossRefGoogle Scholar
  19. Koeppen, B. M., Biagi, B. A., and Giebisch, G. H., 1983, Intracellular microelectrode characterization of the rabbit cortical collecting duct, Am. J. Physiol. 244:F35–47.PubMedGoogle Scholar
  20. Latorre, R., and Miller, C., 1983, Conduction and selectivity in potassium channels, J. Membr. Biol. 71:11–30.PubMedCrossRefGoogle Scholar
  21. Latorre, R., Vergara, C., and Hidalgo, C., 1982, Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle, Proc. Natl. Acad. Sci. U.S.A. 79:805–809.PubMedCrossRefGoogle Scholar
  22. Lindemann, B., and van Driessche, W., 1976, Sodium-specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover, Science 195:292–294.CrossRefGoogle Scholar
  23. Marty, A., 1981, Ca2+-dependent K+ channels with large unitary conductance in chromaffin cell membranes, Nature 291:497–500.PubMedCrossRefGoogle Scholar
  24. Maruyama, Y., Gallacher, D. V., and Petersen, O. H., 1983, Voltage and Ca2+-activated K+ channels in baso-lateral acinar cell membranes of mammalian salivary glands, Nature 302:827–829.PubMedCrossRefGoogle Scholar
  25. Meech, R. W., 1978, Calcium-dependent potassium activation in nervous tissues, Annu. Rev. Biophys. Bioeng. 7:1–18.PubMedCrossRefGoogle Scholar
  26. Morel, F., 1981, Sites of hormone action in the mammalian nephron, Am. J. Physiol. 240:F159-F164.PubMedGoogle Scholar
  27. Nagel, W., 1979, Inhibition of potassium conductance by barium in frog skin epithelium, Biochim. Biophys. Acta 552:346–357.PubMedCrossRefGoogle Scholar
  28. Oberleithner, H., Guggino, W. B., and Giebisch, G., 1982, Mechanism of distal tubular chloride transport in Amphiuma kidney, Am. J. Physiol. 242:F331-F339.PubMedGoogle Scholar
  29. O’Neil, R. G., 1983, Voltage-dependent interaction of barium and cesium with the potassium conductance of the cortical collecting duct apical cell membrane, J. Membr. Biol. 74:165–173.PubMedCrossRefGoogle Scholar
  30. O’Neil, R. G., and Boulpaep, E. L., 1979, Affect of amiloride on the apical cell membrane cation channels of a sodium-absorbing, potassium-secreting renal epithelium, J. Membr. Biol. 50:365–387.PubMedCrossRefGoogle Scholar
  31. O’Neil, R. G., and Helman, S. I., 1977, Transport characteristics of renal collecting tubules: Influence of DOCA and diet, Am. J. Physiol. 233:F544–F558.PubMedGoogle Scholar
  32. O’Neil, R. G., and Sansom, S. C., 1984, Characterization of apical cell membrane Na+ and K+ conductances of cortical collecting duct using microelectrode techniques, Am. J. Physiol. 247:F14-F24.PubMedGoogle Scholar
  33. Pallota, B. S., Magleby, K. L., and Barrett, J. N., 1981, Single channel recordings of Ca2+- activated K+ currents in rat muscle cell culture, Nature 293:471–474.CrossRefGoogle Scholar
  34. Seaman, K. B., and Daly, J., 1981, Forskolin: A unique diterpene activator of cyclic-amp generating systems, J. Cyclic Nucleotide Res. 7:201–224.Google Scholar
  35. Stoner, L. C., Burg, M. B., and Orloff, J., 1974, Ion transport in cortical collecting tubule; effect of amiloride, Am. J. Physiol. 227(2):453–459.PubMedGoogle Scholar
  36. Wong, B. S., Lecar, H., and Adler, M., 1982, Single calcium-dependent potassium channels, Biophys. J. 39:313–317.PubMedCrossRefGoogle Scholar
  37. Yellen, G., 1984, Ionic permeation and blockage in Ca2+-activated K+ channels of bovine chromaffin cells, J. Gen. Physiol. 84:157–186.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Sandra Guggino
    • 1
  1. 1.Laboratory of Molecular Aging, Gerontology Research Center, National Institute on AgingNational Institutes of HealthBaltimoreUSA

Personalised recommendations