Advertisement

Energy-Selective Radiography A Review

  • L. A. Lehmann
  • R. E. Alvarez

Abstract

Energy-selective radiography makes use of body transmission measurements over multiple X-ray energy spectra. These measurements of the spectral properties of the transmitted radiation add a novel dimension to classical radiography, and provide more information than a measurement over a single arbitrary spectrum for the same radiographie exposure. The central questions are: How clinically relevant is this added information? How can measurements be combined to provide an improved image or to isolate valuable and previously unobtainable information? How can imaging systems be constructed to acquire energy-selective measurements? What are the noise properties of energy-selective images, and how do they compare to conventional images?

Keywords

Attenuation Coefficient Modulation Transfer Function Contrast Ratio Digital Radiography Generalize Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Jacobson, Dichromography—A method for in-vivo quantitative analysis of certain elements, Science 128, 1348 (1958).CrossRefGoogle Scholar
  2. 2.
    C. A. Mistrette, M. G. Ort, F. Kelcz, J. R. Cameron, M. P. Sieband, and A. B. Crummy, Absorption edge fluoroscopy using quasimonoenergetic x-ray beams, Invest. Radiol. 8, 402 (1973).Google Scholar
  3. 3.
    F. Kelcz, C. A. Mistrette, and S. J. Riederer, Special considerations for absorption edge fluoroscopy, Med. Phys. 4 (1977).Google Scholar
  4. 4.
    R. A. Kruger, C. A. Mistretta, A. B. Crummy, J. F. Sackett, M. Goodsitt, S. J. Riederer, T. L. Houk, C.-G. Shaw, and D. Flemming, Digital k-edge subtraction radiography, Radiology 125, 243–245 (1977).PubMedGoogle Scholar
  5. 5.
    F. Kelcz and C. A. Mistretta, Absorption edge fluoroscopy using a three spectrum technique, Med. Phys. 3, (1976).Google Scholar
  6. 6.
    P. S. Yeh, Selective material imaging using multiple energy measurements, Ph.D. dissertation, Department of Electrical Engineering, Stanford University, Stanford, California (1980).Google Scholar
  7. 7.
    P. S. Yeh, A. Macovski, and W. Brody, Noise analysis in isolation of iodine using three energies, Med. Phys. 7, 634–643 (1980).CrossRefGoogle Scholar
  8. 8.
    A. Macovski, R. E. Alvarez, L. A. Lehmann, E. Roth, and W. R. Brody, Iodine imaging using three spectra, Proc. SPIE 314, 140 (1981).Google Scholar
  9. 9.
    A. Macovski, R. E. Alvarez, and J. Chan, Selective material x-ray imaging using spatial frequency multiplexing, Appl. Opt. 13, 2202 (1974).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Macovski, R. E. Alvarez, and J. Chan, Spectral selectivity in radiography using a grating encoding system, Proc. SPIE 52 (1975).Google Scholar
  11. 11.
    R. E. Alvarez, Extraction of energy dependent information in radiography, Ph.D. dissertation, Department of Electrical Engineering, Stanford University (1976).Google Scholar
  12. 12.
    E. Rubenstein, et al., Synchrotron radiation and its application to digital subtraction angiography, Proc. SPIE 314, 42 (1981).Google Scholar
  13. 13.
    G. E. Donovan and G. Jones, Colour in radiography, Proc. R. Soc. Med. 44, 816–818 (1951).PubMedGoogle Scholar
  14. 14.
    S. Takahashi, Chromatoroentgenography: A method of taking the colored roentgeno-gram on the multilayer color film, Tohoku J. Exp. Med. 56, 43–45 (1952).PubMedCrossRefGoogle Scholar
  15. 15.
    B. Jacobson and R. S. MacKay, Radiological contrast enhancement methods, Adv. Biol. Med. Phys. 6, 201–261 (1958).PubMedGoogle Scholar
  16. 16.
    A. Hall, N. Pelc, S. J. Riederer, G. S. Keyes, W. R. Brody, L. A. Lehmann, A. Mackovski, and R. E. Alvarez, An experimental system for dual energy scanned projection radiography. Proceedings of SPIE, 314, Conference on Digital Radiography, 155 (1981).Google Scholar
  17. 17.
    F. G. Sommer, W. R. Brody, D. Gross, A. Macovski, A. Hall, and N. Pelc, Excretory urography using dual-energy scanned projection radiography, Radiology 141, 529–532 (1981).PubMedGoogle Scholar
  18. 18.
    F. G. Sommer, W. R. Brody, D. Gross, A. Macovski, A. Hall, and N. Pelc, Dual energy scanned projection radiography, Appl. Radiol. 2, 59–66 (1982).Google Scholar
  19. 19.
    R. A. Kruger, J. D. Armstrong, J. A. Sorenson, and L. T. Niklason, Dual energy film subtraction technique for detecting calcification in solitary pulmonary nodules, Radiology 140, 213–219 (1981).PubMedGoogle Scholar
  20. 20.
    R. T. Ritchings and B. R. Pullan, A technique for simultaneous dual energy scanning, J. Comput. Assist. Tomogr. 3, 842–846 (1979).PubMedGoogle Scholar
  21. 21.
    R. A. Brooks and G. DiChiro, Split-detector computed tomography: A preliminary report, Radiology 126, 255–257 (1978).PubMedGoogle Scholar
  22. 22.
    A. Fenster, Split xenon detector for tomochemistry in computed tomography, J. Cornput. Assist. Tomogr. 2, 243–252 (1978).CrossRefGoogle Scholar
  23. 23.
    R. T. Stone, An energy discriminating detection technique for medical X-ray imaging, Ph.D. dissertation, Department of Electrical Engineering, Stanford University (1981).Google Scholar
  24. 24.
    B. Strul, Energy spectral analysis in projection radiography, Ph.D. dissertation, Department of Electrical Engineering, Stanford University (1981).Google Scholar
  25. 25.
    R. A. Rutherford, B. R. Pullan, and I. Isherwood, X-ray energies for effective atomic number determination, Neuroradiology 11, 23–28 (1976).PubMedCrossRefGoogle Scholar
  26. 26.
    R. A. Rutherford, B. R. Pullan, and I. Isherwood, Measurement of effective atomic number and electron density using an EMI scanner, Neuroradiology 11, 15–21 (1976).PubMedCrossRefGoogle Scholar
  27. 27.
    E. C. McCullough, Photon attenuation in computed tomography, Med. Phys. 2, 307–320 (1975).PubMedCrossRefGoogle Scholar
  28. 28.
    B. K. Agarwal, X-ray Spectroscopy, Springer-Verlag, Berlin (1979).Google Scholar
  29. 29.
    R. E. Alvarez, Energy dependent information in X-ray imaging. Part 1. The vector space description, in press.Google Scholar
  30. 30.
    R. E. Alvarez and E. Seppi, Comparison of noise and dose in conventional and energy selective tomography, IEEE Trans. Nucl. Sci. NS-26, 2853–2856 (1979).CrossRefGoogle Scholar
  31. 31.
    L. A. Lehmann, Utilization of multi-spectral measurements in radiography, Ph.D. dissertation, Department of Electrical Engineering, Stanford University (1982).Google Scholar
  32. 32.
    J. Heinzerling and M. Schlinwein, Nonlinear techniques in multispectral x-ray imaging, IEEE Trans. Nucl. Sci. NS-27, 961–967 (1980).CrossRefGoogle Scholar
  33. 33.
    L. A. Lehmann, R. E. Alvarez, W. R. Brody, N. Pelc, S. J. Riederer, and A. L. Hall, Generalized image combination in dual kVp digital radiography, Med. Phys. 8, 659–667 (1981).PubMedCrossRefGoogle Scholar
  34. 34.
    B. Rutt and A. Fenster, Split-filter computed tomography: A simple technique for dual energy scanning, J. Comput. Assist. Tomogr. 4, 501–509 (1980).PubMedCrossRefGoogle Scholar
  35. 35.
    D. J. Drost and A. Fenster, Experimental dual xenon detectors for quantitative CT and spectral artifact correction, Med. Phys. 7, 101–107 (1980).PubMedCrossRefGoogle Scholar
  36. 36.
    E. Parzen, Stochastic Process, Holden-Day, San Francisco (1982).Google Scholar
  37. 37.
    R. E. Alvarez and L. A. Lehmann, Energy dependent information in X-ray imaging. Part 2. Information extraction and noise, in press.Google Scholar
  38. 38.
    S. J. Riederer, R. A. Kruger, and C. A. Mistretta, Limitations to iodine isolation imaging using a dual beam non-k-edge approach, Med. Phys. 8(1), 54–61 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • L. A. Lehmann
    • 1
  • R. E. Alvarez
    • 1
  1. 1.DigiRad CorporationPalo AltoUSA

Personalised recommendations