Advertisement

Quantitative Aspects of Image Intensifier- Television-Based Digital X-Ray Imaging

  • O. Nalcioglu
  • W. W. Roeck
  • J. A. Seibert
  • A. V. Lando
  • J. M. Tobis
  • W. L. Henry

Abstract

The utilization of video systems in diagnostic X-ray imaging has been around for quite some time. In addition to the visual diagnostic value of images obtained by such systems, the X-ray video systems also offer the potential for extracting quantitative information from the images. In this chapter we will not deal with quantitative determinations based on distance measurements. Even though the quantitation potential has been under investigation for the past decade,(1–3) it was not until the introduction of digital subtraction angiography (DSA)(4) that it received a concentrated effort. DSA makes it possible to visualize a small amount of radiopaque contrast agent within the vessels by means of various digital image enhancement methods which are discussed elsewhere in this book (Chapters 3, 7). Image processing takes place after the digitization of the video signal. Many users may assume that since the output is digital format, it must be as accurate as the data in computed tomography (CT) systems. Unfortunately, this is not true, and the reason is the existence of some basic differences between the CT and image intensifier—television (IT—TV)-based digital X-ray imaging systems. In digital fluoroscopy (or radiography), one usually uses large-area detectors such as an X-ray II. Due to poor detection geometry, the scattered photons within the patient seriously degrade the information obtained by a digital fluoroscopic system.

Keywords

Point Spread Function Iodine Concentration Image Intensifier Video Signal Beam Hardening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Baily, Video techniques for x-ray imaging and data extraction from roentgenographic and fluoroscopic presentations, Med. Phys. 7, 472–491 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    B. G. Trenholm, D. A. Winter, D. Myrain, and E. L. Lansdown, Med. Biol. Eng. 10, 163 (1972).PubMedCrossRefGoogle Scholar
  3. 3.
    N. R. Silverman, Clinical videodensitometry, Am. J. Roentgenol. 114, 814 (1972).Google Scholar
  4. 4.
    C. A. Mistretta, R. A. Kruger, T. L. Houk, S. J. Riederer, C. G. Shaw, D. Ergun, W. Kubal, A. B. Crummy, W. Ziebel, G. Rowe, W. Zarnstorff, and D. Flemming, Computerized fluoroscopy techniques for non-invasive cardiovascular imaging, Proc. SPIE 152, 65–71 (1978).Google Scholar
  5. 5.
    C. A. Mistretta, in The Physics of Medical Imaging: Recording System Measurements and Techniques (A. G. Haus, ed.), Institute of Physics, New York (1979).Google Scholar
  6. 6.
    O. Nalcioglu, J. A. Seibert, W. W. Roeck, W. L. Henry, J. M. Tobis, and W. D. Johnston, Comparison of digital subtraction videodensitometry and area length method in the determination of left ventricular ejection fraction, Proc. SPIE 314, 294–298 (1981).Google Scholar
  7. 7.
    R. A. Kruger, Time dependent subtraction imaging using computerized fluoroscopy, Ph.D. thesis, University of Wisconsin (1978).Google Scholar
  8. 8.
    M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, New York (1964).Google Scholar
  9. 9.
    R. A. Kruger, C. A. Mistretta, and S. J. Riederer, Physical and technical aspects of computerized fluoroscopy difference imaging, IEEE Trans. Nucl. Sci. 28, 205–215 (1981).CrossRefGoogle Scholar
  10. 10.
    W. Hendee, Medical Radiation Physics, Year Book, Chicago (1970).Google Scholar
  11. 11.
    C. G. Shaw, D. L. Ergun, P. D. Myerowitz, M. S. Van Lysel, C. A. Mistretta, W. Zarnstorff, and A. B. Crummy, A technique of scatter and glare correction for video-densitometric studies in digital subtraction angiography, Radiology 142, 209 (1982).PubMedGoogle Scholar
  12. 12.
    J. A. Seibert, O. Nalcioglu, and W. W. Roeck, A deconvolution technique for the improvement of contrast of image intensifiers, Proc. SPIE 314, 310–318 (1981).Google Scholar
  13. 13.
    O. Nalcioglu, J. A. Seibert, J. M. Boone, Y. Wang, W. W. Roeck, W. L. Henry, J. M. Tobis, and W. D. Johnston, in Digital Imaging in Cardiovascular Radiology (P. H. Heintzen and R. Brennecke, eds.), Thieme, Stuttgart (1983).Google Scholar
  14. 14.
    J. A. Seibert, O. Nalcioglu, and W. W. Roeck, Removal of image intensifier veiling glare by mathematical deconvolution techniques, Med. Phys. 12, 281 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    J. A. Seibert, O. Nalcioglu, and W. W. Roeck, Characterization of the veiling glare PSF in x-ray image intensified fluoroscopy, Med. Phys. 11, 172 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    B. R. Frieden, in Picture Processing and Digital Filtering (T. S. Huang, ed.), Springer-Verlag, Berlin (1975).Google Scholar
  17. 17.
    E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, N.J. (1974).Google Scholar
  18. 18.
    H. H. Barrett and W. Swindell, Radiological Imaging, Academic Press, New York (1981).Google Scholar
  19. 19.
    R. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill, New York (1965).Google Scholar
  20. 20.
    E. C. McCullough, Photon attenuation in computer tomography, Med. Phys. 2, 307 (1975).PubMedCrossRefGoogle Scholar
  21. 21.
    J. G. Pearce, E. N. C. Milne, G. D. Gillan, and W. Roeck, Development of a radiographic chest phantom with disease simulation, Invest. Radiol. 14, 181 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    R. A. Kruger, Estimation of the diameter of and iodine concentration within blood vessels using digital radiography devices, Med. Phys. 8, 652 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    J. M. Tobis, Y. Wang, O. Nalcioglu, and W. Henry, Absolute left ventricular volume obtained by videodensitometry and DSA, J. Am. Col. Cardiol. 2, 616 (1983).CrossRefGoogle Scholar
  24. 24.
    H. T. Dodge, H. Sandler, D. Ballew, and J. D. Lord, The use of biplane angiocardiography for measurement of left ventricular volume in man, Am. Heart J. 60, 762 (1960).PubMedCrossRefGoogle Scholar
  25. 25.
    J. A. Seibert, O. Nalcioglu, J. Tobis, W. Roeck, and W. Henry, Factors influencing quantitation of absolute ventricular volume by digital subtraction angiography, in press.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • O. Nalcioglu
    • 1
  • W. W. Roeck
    • 1
  • J. A. Seibert
    • 2
  • A. V. Lando
    • 1
  • J. M. Tobis
    • 3
  • W. L. Henry
    • 3
  1. 1.Department of Radiological SciencesUniversity of CaliforniaIrvineUSA
  2. 2.Department of RadiologyUniversity of CaliforniaDavisUSA
  3. 3.Department of Medicine (Cardiology)University of CaliforniaIrvineUSA

Personalised recommendations