Advertisement

Noise Analysis in Digital Radiography

  • B. A. Arnold

Abstract

Noise plays a dominant role in the detection of low-contrast objects in any imaging system. Until the advent of the computed tomography (CT) scanner and more recently digital radiography, noise in an imaging system (typically a screen—film combination) was considered to have two major components: quantum mottle, the statistical fluctuations in the number of detected photons, and structure noise, due to phosphor screen inhom-ogeneities and film grain. The development of electronic X-ray detectors and in particular digital video subtraction systems has added much complexity to noise analysis. Due to the many new noise sources present, noise analysis now requires new evaluation criteria and techniques.

Keywords

Noise Source Scattered Radiation Modulation Transfer Function Image Intensifier Digital Radiography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Kruger, C. A. Mistretta, and S. J. Riederer, Physical and technical considerations of computerized fluoroscopic difference imaging, IEEE Trans. Nucl. Sci. 28, 205–212 (1981).CrossRefGoogle Scholar
  2. 2.
    S. J. Riederer, F. A. DiBianca, and J.-P. J. Georges, Performance characteristics of a digital fluorographic system, Proc. SPIE 273, 88–95 (1981).Google Scholar
  3. 3.
    M. M. Frost, S. Nudelman, and T. W. Ovitt, Digital acquisition system for photo-electronic radiology: A performance overview, Proc. SPIE 233, 54–60 (1980).Google Scholar
  4. 4.
    H. Roehrig, S. Nudelman, M. P. Capp, and M. M. Frost, X-ray image intensifier video system for diagnostic radiology. Part I. Design characteristics, Proc. SPIE 127, 216–225 (1977).Google Scholar
  5. 5.
    R. A. Kruger, C. A. Mistretta, and J. Lancaster, A digital video image processor for real time x-ray subtraction imaging, Opt. Eng. 17, 652–657 (1978).Google Scholar
  6. 6.
    P. O. Scheibe and A. J. Thomas, Noise sources in digital fluorography, Proc. SPIE 314, 202–210 (1981).Google Scholar
  7. 7.
    B. A. Arnold, D. Borger, P. Scheibe, and J. Pawlicki, Digital Video Subtraction An-giography, Scientific Exhibit, Radiological Society of North America, Chicago (1980).Google Scholar
  8. 8.
    B. A. Arnold and P. O. Scheibe, Noise analysis of a digital radiography system, Am. J. Roentgenol. 143, 609–613 (1984).Google Scholar
  9. 9.
    N. J. Pelc, Statistical aspects of digital x-ray imaging, in Electronic Imaging in Medicine (G. D. Fullerton, ed.), American Institute of Physics, New York (1984).Google Scholar
  10. 10.
    R. J. Gould, M. J. Lipton, P. Mengers, and R. Dahlberg, Digital subtraction fluoroscopic system with tandem video processing units, Proc. SPIE 273, 125–131 (1981).Google Scholar
  11. 11.
    W. J. McIntyre, W. Pavlicek, and J. H. Gallagher, Imaging capability of an experimental digital subtraction angiography unit, Radiology 139, 307–313 (1981).Google Scholar
  12. 12.
    B. A. Arnold, H. Eisenberg, D. Borger, and A. Metherell, Digital radiography—An overview, Proc. SPIE 273, 215–226 (1981).Google Scholar
  13. 13.
    B. A. Arnold, H. Eisenberg, and D. Borger, Digital video angiography system evaluation, Appl. Radiol. 10, 81–90 (1981).PubMedGoogle Scholar
  14. 14.
    B. Widrow, A study of rough amplitude quantization by means of Nyquist sampling theory, IEEE Trans. Circuit Theory 3(4), 266–276 (1956).CrossRefGoogle Scholar
  15. 15.
    G. T. Barnes and I. A. Brezovich, The intensity of scattered radiation in mammography, Radiology 126, 243–247 (1978).PubMedGoogle Scholar
  16. 16.
    H. L. Kundel and G. Revesz, Lesion conspicuity, structured noise, and film reader error, Am. J. Roentgenol. 126, 1233–1238 (1976).Google Scholar
  17. 17.
    R. F. Wagner, Noise equivalent parameters in general radiography: The present picture and future picture, Photogr. Sci. Eng. 21, 252–262 (1977).Google Scholar
  18. 18.
    R. A. Brooks and G. DiChiro, Principles of computer assisted tomography (CAT) in radiographie and radioisotope imaging, Phys. Med. Biol. 21, 689–732 (1972).CrossRefGoogle Scholar
  19. 19.
    M. D. Ter-Pogossian, M. E. Phelps, E. J. Hoffman, and J. O. Eichung, The extraction of the yet unused wealth of information in diagnostic radiology, Radiology 113, 515–520 (1974).Google Scholar
  20. 20.
    G. Cohen, L. K. Wagner, S. R. Amtey, and F. A. DiBianca, Contrast-detail dose and dose efficiency analysis of a scanned digital and a screen-film-grid radiographie system, Med. Phys. 8, 358–367 (1981).PubMedCrossRefGoogle Scholar
  21. 21.
    J. W. Motz and M. Danos, Image information content and patient exposure, Med. Phys. 5, 3–22 (1978).CrossRefGoogle Scholar
  22. 22.
    R. F. Wagner, Decision theory and the detail signal-to-noise of Otto Schade, Photogr. Sci. Eng. 22, 41–46 (1978).Google Scholar
  23. 23.
    O. H. Schade, Imaging Quality: A Comparison of Photographic and Television Systems, RCA Laboratories, Princeton, N.J. (1975).Google Scholar
  24. 24.
    A. Rose, Vision: Human and Electronic, Plenum Press, New York (1973).Google Scholar
  25. 25.
    R. F. Wagner, G. T. Barnes, and B. S. Askins, Effects of reduced scatter on radiographic information content and patient exposure: A quantitative demonstration, Med. Phys. 7, 13–18 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    G. T. Barnes, H. M. D. Cleare, and I. A. Brezovich, Reduction of scatter in diagnostic radiology by means of a scanning multiple slit assembly, Radiology 120, 691 (1976).PubMedGoogle Scholar
  27. 27.
    A Rose, The sensitivity performance of the human eye on absolute scale, J. Opt. Soc. Am. 38, 195 (1948).CrossRefGoogle Scholar
  28. 28.
    R. E. Strum and R. H. Morgan, Screen intensification systems and their limitation, Am. J. Roentgenol. 62, 617 (1949).Google Scholar
  29. 29.
    R. C. Jones, Method of measuring the granularity of photographic materials Photogr. Sci. Eng. 2, 57 (1958).Google Scholar
  30. 30.
    B. A. Arnold, Digitalradiography test phantom, Scientific Exhibit, Radiological Society of North America, Chicago (1982).Google Scholar
  31. 31.
    B. A. Arnold, Digital test phantom and method for its fabrication, U.S. Patent Application 6, 555, 608 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • B. A. Arnold
    • 1
    • 2
  1. 1.Image Analysis, Inc.IrvineUSA
  2. 2.Department of Radiological SciencesUCLA Medical SchoolLos AngelesUSA

Personalised recommendations