Advertisement

Image Processors for Digital Angiography Algorithms and Architectures

  • R. Brennecke

Abstract

After a period of experimental and clinical development,(1–9) digital processing of angiographic X-ray video image sequences is now routinely applied in clinical and research work. The clinical advantages offered by this approach have been discussed in several reports.(10–12) The primary application is the improved visualization of regions of the heart and circulation opacified by X-ray contrast material during angiographic and angiocardiographic examinations. More complex techniques are being developed for improved functional analysis based on digitized angiograms. Technically, the digital techniques also potentially offer improved means of acquiring, storing, and handling images when compared to present film-based angiography. It is therefore expected that in many applications the film will eventually be replaced by digital photoelectronic methods of X-ray image acquisition, archiving, and communication.(9,13,14)

Keywords

Image Sequence Digital Video Host Computer Array Processor Image Processor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Brennecke, T. K. Brown, J. H. Bürsch, and P. H. Heintzen, Digital processing of videoangiographic image series using a minicomputer, in Proc. Comput., Cardiol., pp. 255-260 (1976).Google Scholar
  2. 2.
    R. Brennecke, T. K. Brown, J. H. Bürsch, and P. H. Heintzen, Computerized video-image preprocessing with applications to cardio-angiographic roentgen-image series, in Digital Image Processing (H. H. Nagel, ed.), Springer, Berlin, pp. 244–262 (1977).Google Scholar
  3. 3.
    P. H. Heintzen, R. Brennecke, and J. H. Bürsch, Computer quantitation of angiocardiographic images, Proc. SPIE 167, 17–21 (1978).Google Scholar
  4. 4.
    R. A. Kruger, C. A. Mistretta, T. L. Houk, S. J. Riederer, and C. G. Shaw, Computerized fluoroscopy in real time for noninvasive visualization of the cardiovascular system, Radiology 130, 49–57 (1979).PubMedGoogle Scholar
  5. 5.
    T. W. Ovitt, P. C. Christenson, H. D. Fisher, M. M. Frost, S. Nudelman, H. Roehrig, and G. Seeley, Intravenous angiography using digital video subtraction: The X-ray imaging system, Am. J. Roentgenol. 135, 1141–1144 (1980).Google Scholar
  6. 6.
    A. B. Crummy, C. M. Strother, J. F. Sackett, D. L. Ergun, C. G. Shaw, R. A. Kruger, C. A. Mistretta, W. D. Turnipseed, R. P. Lieberman, P. D. Myerowitz, and F. F. Ruzicka, Computerized fluoroscopy: Digital subtraction for intravenous angiocardiography and arteriography, Am. J. Roentgenol. 135, 1131–1140 (1980).Google Scholar
  7. 7.
    T. F. Meaney, M. A. Weinstein, E. Buonocore, W. Pavlicek, G. P. Borkowski, J. E. Gallagher, B. Sufka, and W. J. MacIntyre, Digital subtraction angiography of the human cardiovascular system, Am. J. Roentgenol. 135, 1153–1160 (1980).Google Scholar
  8. 8.
    R. Brennecke, J. H. Bürsch, H. G. Bogren, and P. H. Heintzen, Digital intravenous imaging techniques in pediatric cardiology, in Digital Subtraction Arteriography (C. A. Mistretta, A. B. Crummy, C. M. Strother, and J. F. Jackett, eds.), Year Book, Chicago, pp. 133–141 (1982).Google Scholar
  9. 9.
    S. Nudelman, Photoelectronic-digital radiology, in Digital Imaging in Cardiovascular Radiology (P. H. Heintzen and R. Brennecke, eds.), Thieme, Stuttgart, pp. 1–14 (1983).Google Scholar
  10. 10.
    C. A. Mistretta, A. B. Crummy, C. M. Strother, and J. F. Jackett (eds.), Digital Subtraction Arteriography, Year Book, Chicago (1982).Google Scholar
  11. 11.
    P. H. Heintzen and R. Brennecke (eds.), Digital Imaging in Cardiovascular Radiology, Thieme, Stuttgart (1983).Google Scholar
  12. 12.
    O. Ratib and W. Rutishauser, Recent developments in cardiac digital radiography, Int. J. Cardiac Imaging, 29-40 (1985).Google Scholar
  13. 13.
    A. J. Duerinckx (ed.), Picture Archiving and Communications Systems, Proc. SPIE 318 (1982).Google Scholar
  14. 14.
    R. H. Schneider and S. J. Dwyer III (eds.), Applications of optical instrumentation in medicine XIII, Proc. SPIE 535 (1985).Google Scholar
  15. 15.
    C. A. Mistretta, Digital videoangiography, Diagn. Imag. 3, 14–18, (1981).Google Scholar
  16. 16.
    R. Brennecke, Digital processing of video image sequences, in Digital Imaging in Cardiovascular Radiology (P. H. Heintzen and R. Brennecke, eds.), Thieme, Stuttgart, pp. 24–34 (1983).Google Scholar
  17. 17.
    R. Brennecke and J. H. Bürsch, Functional analysis of angiograms by digital image processing techniques, in Selected Topics in Image Science (O. Nalcioglu and Z. H. Chow, eds.), Springer, Berlin, pp. 182–216 (1984).CrossRefGoogle Scholar
  18. 18.
    A. N. Netravali and J. O. Limb, Picture coding: A review, Proc. IEEE 68, 366–406 (1980).CrossRefGoogle Scholar
  19. 19.
    R. Brennecke, J. H. Hahne, K. Moldenhauer, J. H. Bürsch, and P. H. Heintzen, Improved digital read-time processing and storage techniques, in Proc. Comput. Cardiol., pp. 191-194 (1978).Google Scholar
  20. 20.
    L. A. Lehmann and A. Macovski, Data compression of x-ray images by DPCM coding, Proc. SP1E 314, 396–404 (1981).Google Scholar
  21. 21.
    P. C. Christenson, T. W. Ovitt, H. D. Fisher, M. M. Frost, S. Nudelman, and H. Roehrig, Intravenous angiography using digital video subtraction, Am. J. Roentgenol. 135, 1145–1152 (1980).Google Scholar
  22. 22.
    R. L. Lillestrand, Techniques for change detection, IEEE Trans. Comput. 21, 654–659 (1972).CrossRefGoogle Scholar
  23. 23.
    P. Alexander, Array processors in medical imaging, Computer (IEEE) 16(6), 17–31 (1983).CrossRefGoogle Scholar
  24. 24.
    R. A. Kruger, A method for time domain filtering using computerized fluoroscopy, Med. Phys. 8, 466–470 (1981).PubMedCrossRefGoogle Scholar
  25. 25.
    R. G. Gould, M. J. Lipton, P. Mengers, and R. Dahlberg, Investigation of a video frame averaging digital subtraction fluoroscopic system, Proc. SPIE 314, 184–190 (1981).Google Scholar
  26. 26.
    M. Pfeiler and P. Marhoff, Zur Technik der digitalen Röntgenbildvararbeitung, Electromedica 51(1), 20–31 (1983).Google Scholar
  27. 27.
    K. H. Höhne, M. Böhm, W. Erbe, G. C. Nicolae, G. Pfeiffer, and B. Sonne, Computer angiography: A new tool for x-ray functional diagnosis, Med. Progr. Technol. 6, 23–28 (1978).Google Scholar
  28. 28.
    J. H. Bürsch, H. J. Hahne, R. Brennecke, D. Grönemeyer, and P. H. Heintzen, Assessment of arterial blood flow measurements by digital angiography, Radiology 14, 30–47 (1981).Google Scholar
  29. 29.
    R. Vogel, M. T. Le Free, E. Bates, W. O’Neill, R. Forster, P. Kirlin, D. Smith and B. Pill, Applications of digital techniques to selective coronary arteriography, Am. Heart J. 107, 153–164, (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    R. Brennecke, H. J. Hahne, J. H. Bürsch, and P. H. Heintzen, Optimization of generalized subtraction operations for digital fluorography, in Digital Imaging in Cardiovascular Radiology (P. H. Heintzen and R. Brennecke, eds.), Thieme, Stuttgart, pp. 67–80 (1983).Google Scholar
  31. 31.
    R. A. Kruger, J. A. Nelson, F. J. Miller, P. Liu, W. Bateman, and S. Baron, Temporal filtering techniques for digital angiography, in Digital Imaging in Cardiovascular Radiology (P. H. Heintzen and R. Brennecke, eds.), Thieme, Stuttgart, pp. 80–88 (1983).Google Scholar
  32. 32.
    M. Böhm and K. H. Höhne, The processing and analysis of radiographic image sequences, in Digital Image Processing in Medicine (K. H. Höhne, ed.), Springer, Berlin, pp. 15–41 (1982).Google Scholar
  33. 33.
    J. A. Seibert, O. Nalcioglu, and W. W. Roeck, Deconvolution technique for the improvement of contrast of image intensifiers, Proc. SPIE 314, 310–318 (1981).Google Scholar
  34. 34.
    C. G. Shaw, D. L. Ergun, P. D. Myerowitz, M. S. Van Lysel, C. A. Mistretta, W. C. Zarnstorff, and A. B. Crummy, A technique of scatter and glare correction for video-densitometric studies, Radiology 142, 209–213 (1981).Google Scholar
  35. 35.
    R. Brennecke, T. K. Brown, J. H. Hürsch, and P. H. Heintzen, A digital system for roentgen-video image processing, in Roentgen-Video Techniques (P. H. Heintzen and J. H. Bürsch, eds.), Thieme, Stuttgart, pp. 150–157 (1978).Google Scholar
  36. 36.
    W. W. Peppler, M. S. Van Lysel, J. T. Dobbins, J. C. Lancaster, J. Hicks, B. H. Hasegawa, C. S. Lee, N. Sheikh, W. C. Zarnstorff, C. A. Mistretta, P. D. Myerowitz, and D. K. Swanson, Progress report on the University of Wisconsin digital video image processor (DVI II), in Digital Imaging in Cardiovascular Radiology (P. H. Heintzen and R. Brennecke, eds.), Thieme, Stuttgart, pp. 56–66 (1983).Google Scholar
  37. 37.
    B. K. Gilbert, M. T. Storma, C. E. James, L. W. Holbrock, E. S. Yang, K. C. Ballard, and E. H. Wood, A real-time hardware system for digital processing of wide-band video images, IEEE Trans. Comput. 25, 1089–1100 (1976).CrossRefGoogle Scholar
  38. 38.
    P. Mengers, Real-time digital image processing for radiological imaging, in Real-Time Radiologic Imaging (D. A. Garrett and D. A. Bracher, eds.), Americal Society for Testing and Materials, Philadelphia, pp. 267–276 (1980).CrossRefGoogle Scholar
  39. 39.
    R. H. McMann, S. Kreinik, J. K. Moore, A. Kaiser, and J. Rossi, A digital noise reducer for encoded NTSC-signal, J. SMPTE 87, 129–133 (1978).CrossRefGoogle Scholar
  40. 40.
    R. A. Kruger, C. A. Mistretta, J. Lancaster, T. L. Houk, M. Goodsitt, C. G. Shaw, S. J. Riederer, J. Hicks, J. Sackett, A. B. Crummy, and D. Fleming, A digital video image processor for real-time x-ray subtraction imaging, Opt. Eng. 17, 652–657 (1978).Google Scholar
  41. 41.
    F. Buchmann and S. Balter, Roentgenbilder in digitaler Darstellung, Computertomographie 1, 47–51 (1981).PubMedGoogle Scholar
  42. 42.
    M. S. Van Lysel, W. C. Zarnstorff, J. C. Lancaster, C. A. Mistretta, and J. T. Dobbins, III, Real-time digital video recording system, Proc. SPIE 314, 389–395 (1981).Google Scholar
  43. 43.
    D. J. Hedberg, A real-time digital video disc recorder for medical imaging, Proc. SPIE 318, 47–55 (1982).Google Scholar
  44. 44.
    C. Warren, A mix of standard and proprietary buses marks the latest microcomputer systems, Electron. Des. 17, 114–120 (1981).Google Scholar
  45. 45.
    T. Wendler, D. Böhring, D. Meyer-Ebrecht, J. Schmidt, and H. Svensson, Modular multiprocessor picture computer architecture for distributed picture information systems, Proc. SPIE 318, 125–132 (1982).Google Scholar
  46. 46.
    W. Ameling, Computer structures for digital imaging, in Advances in Noninvasive Cardiology (J. Meyer, P. Schweizer, and R. Erbel, eds.), Nijhoff, The Hague, pp. 1–12 (1983).CrossRefGoogle Scholar
  47. 47.
    M. Onoe, K. Preston, and A. Rosenfeld (eds.), Real-time Medical Image Processing, Plenum Press, New York (1980).Google Scholar
  48. 48.
    G. C. Nicolae and K. H. Höhne, Multiprocessor system for real-time digital processing of video-image series, Elektron. Rechenanlagen 21, 171–183 (1979).Google Scholar
  49. 49.
    R. Brennecke, H. J. Hahne, and P. H. Heintzen, A multiprocessor system for the acquisition and analysis of video image sequences, in Erzeugung und Analyse von Bildern und Strukturen (S. J. Pöppl and H. Platzer, eds.), Springer, Berlin, pp. 113–122 (1980).CrossRefGoogle Scholar
  50. 50.
    P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins, Data-driven and demand-driven computer architecture, ACM Comput. Surv. 14, 93–143 (1982).CrossRefGoogle Scholar
  51. 51.
    P. H. Heintzen, R. Brennecke, and J. H. Bürsch, Present status of digital angiocardiography, in Advances in Noninvasive Cardiology (J. Meyer, P. Schweizer, and R. Erbel, eds.), Nijhoff, The Hague, pp. 51–66 (1983).CrossRefGoogle Scholar
  52. 52.
    ACR-NEMA digital imaging and communication standard draft, November 19 (1984).Google Scholar
  53. 53.
    R. Brennecke, D. Jung, W. Clas, R. Erbel and J. Meyer, TALISMAN, An interpreter language for image sequence management, Proc. Comp. Cardiol. 1985, IEEE Computer Society, Long Beach, California (in press).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. Brennecke
    • 1
  1. 1.Medical ClinicJohannes Gutenberg UniversityMainzFederal Republic of Germany

Personalised recommendations