Neutrophil Activation, Polyphosphoinositide Hydrolysis, and the Guanine Nucleotide Regulatory Proteins

  • Paul H. Naccache
  • Ramadan I. Sha’afi
Part of the New Horizons in Therapeutics book series (NHTH)


Mechanochemical transduction is an intimate component of several functions that neutrophilic polymorphonuclear leukocytes (neutrophils) perform as part of their role in the body’s first Hne of defense against foreign pathogens. Thus, the neutrophils represent a convenient model system for the study of the activation mechanisms in nonmuscle cells.


Adenylate Cyclase Human Neutrophil Phorbol Myristate Acetate Phorbol Ester Phosphatidic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, D., and Michell, R. H., 1977, Calcium-ion-dependent diacylglycerol accumulation in erythrocytes is associated with microvesiculation but not with efflux of potassium ions, Biochem. J. 166:495–499.PubMedGoogle Scholar
  2. Aloyo, V. J., Zwiers, H., and Gispen, W. H., 1983, Phosphorylation of B-50 protein by calcium activated, phospholipid dependent protein kinase and B-50 protein kinase, J. Neurochem. 41:649–653.PubMedCrossRefGoogle Scholar
  3. Andrews, P. C., and Babior, B. M., 1983, Endogenous protein phosphorylation by resting and activated human neutrophils, Blood 61:333–340.PubMedGoogle Scholar
  4. Andrews, P. C., and Babior, B. M., 1984, Phosphorylation of cytosolic proteins by resting and activated neutrophils, Blood 64:883–890.PubMedGoogle Scholar
  5. Baraban, J. M., Gould, R. J., Peroutka, S. J., and Snyder, S. H., 1985, Phorbol ester effects on neurotransmission: Interaction with neurotransmitters and calcium in smooth muscle, Proc. Natl. Acad. Sci. U.S.A. 82:604–607.PubMedCrossRefGoogle Scholar
  6. Becker, E. L., Showell, H. J., Naccache, P. H., and Sha’afi R. I., 1978, Enzymes in granulocyte movement; preliminary evidence for the involvement of, in: Leukocyte Chemotaxis (J. I. Gallin and P. G. Quie, eds.), Raven Press, New York, pp. 113–121.Google Scholar
  7. Becker, E. L., Kermode, J. C., Naccache, P. H., Yassin, R., Marsh, M. L., Munoz, J. J., and Sha’afi, R. I., 1985, The inhibition of neutrophil granule enzyme secretion and Chemotaxis by pertussis toxin, J. Cell Biol. 100:1641–1646.PubMedCrossRefGoogle Scholar
  8. Bell, R. L., Kennedy, D. A., Stanford, N., and Majerus, P. W., 1979, Diglyceride lipase: A pathway for arachidonate release from human platelets, Proc. Natl. Acad. Sci. U.S.A. 76:3238–3241.PubMedCrossRefGoogle Scholar
  9. Berridge, M. J., 1984, Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J. 220:345–360.PubMedGoogle Scholar
  10. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321.PubMedCrossRefGoogle Scholar
  11. Bokoch, G. M., and Oilman, A. G., 1984, Inhibition of receptor-mediated release of arachidonic acid by pertussis toxin. Cell 39:301–308.PubMedCrossRefGoogle Scholar
  12. Bradford, P. G., and Rubin, R. P., 1985, Characterization of formyl-methionyl-leucyl-phenylalanine stimulation of inositol trisphosphate accumulation in rabbit neutrophils, Mol. Pharmacol. 27:74–78.Google Scholar
  13. Brown, J. E., and Rubin, L. J., 1984, A direct demonstration that inositol trisphosphate induces an increase in intracellular calcium in Limulus photoreceptors, Biochem. Bio. phys. Res. Commun. 125:1137–1142.CrossRefGoogle Scholar
  14. Burgess, G. M., McKinney, J. S., Irvin, R. F., Berridge, M. J., Hoyle, P. C., and Putney, J. W., 1984, Inositol 1,4,5-trisphosphate may be a signal for filet-Leu-Phe induced intracellular Ca mobilization in human leukocytes (HL 60 cells), FEBS Lett. 176:193–196.PubMedCrossRefGoogle Scholar
  15. Camussi, G., Tetta, C., Bussolino, F., Caligaris Cappio, F., Coda, R., Masera, C. and Segoloni, G., 1981, Mediators of immune-complex induced aggregation of polymorphonuclear neutrophils. II. Platelet-activating factor as the effector substance of immune induced aggregation. Int. Arch. Allergy Appl. Immunol. 64:25–41.PubMedCrossRefGoogle Scholar
  16. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, V., and Nishizuka, Y., 1982, Direct activation of calcium activated phospholipid dependent protein kinase by tumor promoting phorbol esters, J. Biol. Chem. 257:7847–7851.PubMedGoogle Scholar
  17. Cockroft, S., 1982, Phosphatidylinositol metaboHsm in mast cells and neutrophils. Cell Calcium 3:337–349.CrossRefGoogle Scholar
  18. Dale, M. M., and Penfield, A., 1984, Synergism between phorbol ester and A23187 in superoxide production by neutrophils, FEBS Lett. 175:170–172.PubMedCrossRefGoogle Scholar
  19. Dawson, R. M. C., Remington, N. L., and Irvine, R, F., 1983, Diacylglycerol potentiates phospholipase attack upon phospholipid bilayers: Possible connection with cell stimulation, Biochem. Biophys. Res. Commun. 117:196–201.PubMedCrossRefGoogle Scholar
  20. De Chafifoy de Courcelles, D., Roevens, P., and van Belle, H., 1984, 12-0-Tetradecanoyl-phorbol 13-acetate stimulates inositol lipid phosphorylation in intact human platelets, FEBS Lett. 173:389–393.Google Scholar
  21. De Chatelet, L. R., Shirley, P. S., and Johnston, R. B., Jr., 1976, Effect of phorbol myristate acetate on the oxidative metabolism of human polymorphonuclear leukocytes. Blood 47:545–554.Google Scholar
  22. Demel, R. A., Geurts Van Kessel, W. S. M., Zwale, R. F. A., Roelofsen, B., and Van Deenen, L. L. M., 1975, Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers, Biochim. Biophys. Acta 406:97–107.PubMedCrossRefGoogle Scholar
  23. DiVirgilio, F., Lew, P. D., and Pozzan, T., 1984, Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytosolic Ca2+ levels. Nature 310:691–693.PubMedCrossRefGoogle Scholar
  24. Dougherty, R. W., Godfrey, P. P., Hoyle, P. C., Putney, J. W., Jr., and Freer, R. J., 1984, Secretagogue induced phosphoinositide metabolism in human leukocytes, Biochem. J. 222:307–314.PubMedGoogle Scholar
  25. Estensen, R. D., White, J. G., and Holmes, B., 1974, Specific degranulation of human polymorphonuclear leukocytes. Nature 248:347–348.PubMedCrossRefGoogle Scholar
  26. Feinstein, M. B., Egan, J. J., Sha’afi, R. I., and White, J., 1983, The cytoplasmic concentration of free calcium in platelets is controlled by stimulators of cyclic AMP production (PGD2, PGEi, forskolin), Biochem. Biophys. Res. Commun. 113:598–604.PubMedCrossRefGoogle Scholar
  27. Fujita, I., Irita, K., Takeshige, K., and Minakami, S., 1984, Diaglycerol, l-oleyl-2-acetylglycerol stimulates superoxide generation from human neutrophils, Biochem. Biophys. Res. Commun. 120:318–324.PubMedCrossRefGoogle Scholar
  28. Garte, S. J., and Belman, S., 1980, Tumor promoter uncouples beta-adrenergic receptor from adenylate cyclase in mouse epidermis. Nature 284:171–173.PubMedCrossRefGoogle Scholar
  29. Gay, J. G., Beckman, J. K., Brash, A. R., Gates, J. A., and Lukens, J. N., 1984, Enhancement of chemotactic factor-stimulated neutrophil oxidative metabolism by leukotriene B4, Blood 64:780–785.PubMedGoogle Scholar
  30. Gilman, A. G., 1984, G proteins and dual control of adenylate cyclase. Cell 36:577–579.PubMedCrossRefGoogle Scholar
  31. Gilmore, T., and Martin, G. S., 1983, Phorbol ester and diacylglycerol induce protein phosphorylation at tyrosine. Nature 306:487–490.PubMedCrossRefGoogle Scholar
  32. Goldman, D. W., Gifford, C. A., Bourne, H. R., and Goetzl, E. J., 1984, Pertussis toxin inhibits the activation of human neutrophils by chemotactic factors, J. Cell Biol. 99:278.Google Scholar
  33. Gomperts, B. D., 1983, Involvement of guanine nucleotide binding protein in the gating of Ca2+ by receptors. Nature 306:64–66.PubMedCrossRefGoogle Scholar
  34. Halenda, S. P. and Feinstein, M. B. 1984, Phorbol myristate acetate stimulates formation of phosphatidylinositol 4-phosphate and phosphatidyhnositol 4,5-bisphosphate in human platelets. Biochem. Biophys. Res. Commun. 124:507–513.PubMedCrossRefGoogle Scholar
  35. Haslam, R. J., and Davidson, M. M. L., 1984, Guanine nucleotides decrease the free [Ca2+] required for secretion of serotonin from permeabilized blood platelets. Evidence of a role for a GTP binding protein in platelet activation, FEBS Lett. 174:90–95.PubMedCrossRefGoogle Scholar
  36. Helfman, D. M., Appelbaum, B. D., Vogler, W. R., and Kuo, J. F., 1983, Phospholipid-sensitive Ca2+-dependent protein kinase and its substrates in human neutrophils, Biochem. Biophys. Res. Commun. 111:847–853.PubMedCrossRefGoogle Scholar
  37. Henson, P. M., Zanolari, B., Schwartzman, N. A., and Hong, S. R., 1978, Intracellular control of human neutrophil secretion. 1. C5a induced stimulus specific desensitization and the effects of cytochalasin, Br. J. Immunol. 121:851–855.Google Scholar
  38. Hesketh, T. R., Moore, J. P., Morris, J. D. H., Taylor, M. V., Rogers, J., Smith, G. A., and Metcalf, J. C., 1985, A common sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells. Nature 313:481–484.PubMedCrossRefGoogle Scholar
  39. Hill, H. R., 1978, Cyclic nucleotides as modulators of leukocyte Chemotaxis, in: Leukocyte Chemotaxis (J. I. Gallin and P. G. Quie, eds.). Raven Press, New York, pp. 179–193.Google Scholar
  40. Huang, C.-K., Hill, J. M., Jr., Bormann, B. J., Mackin, W. M., and Becker, E. L., 1983, Endogenous substrates for cycHc-AMP dependent and calcium dependent protein phosphorylation in rabbit peritoneal neutrophils, Biochim. Biophys. Acta 760:126–135.PubMedCrossRefGoogle Scholar
  41. Irvine, R. F., Letcher, A. J., Lander, D. J., and Downes, C. P., 1984, Inositol trisphosphates in carbachol stimulated rat parotid glands, Biochem. J. 223:237–243.PubMedGoogle Scholar
  42. Jolles, J., Zwiers, H., Dekker, A., Wirtz, K. W. A., and Gispen, W. H., 1981, Corticotropin (l-24)-tetracosapeptide affects protein phosphorylation and polyphosphoinositide metabolism in rat brain, Biochem. J. 194:283–291.PubMedGoogle Scholar
  43. Kaibuchi, K., Takai, Y., and Nishizuka, Y., 1981, Cooperative roles of various membrane phospholipids in the activation of calcium activated phospholipid dependent protein kinase, J. Biol. Chem. 256:7146–7149.PubMedGoogle Scholar
  44. Kajikawa, N., Kaibuchi, K., Matsubara, T., Kikkawa, U., Takai, Y., and Nishizuka, Y., 1983, A possible role of protein kinase C in signal induced lysosomal enzyme release, Biochem. Biophys. Res. Commun. 116:743–750.PubMedCrossRefGoogle Scholar
  45. Kanaho, Y., Tsai, S.-C., Adamik, R., Hewlett, E. L., Moss, J., and Vaughan, M., 1984, Rhodopsin enhanced GTPase activity of the inhibitory GTP binding protein of adenylate cyclase, J. Biol. Chem. 259:7378–7381.PubMedGoogle Scholar
  46. Kraft, A. S., and Anderson, W. B., 1983, Phorbol esters increased the amount of +, phospholipid dependent protein kinase associated with plasma membrane. Nature 304:621–623.CrossRefGoogle Scholar
  47. Labarca, R., Janowsky, A., Patel, J., and Paul, S. M., 1984, Phorbol esters inhibit agonist induced 3H-inositol-1-phosphate accumulation in rat hippocampal slices, Biochem. Biophys. Res. Commun. 123:703–709.PubMedCrossRefGoogle Scholar
  48. Lad, P. M., Glovsky, M. M., Smiley, P. A., Klempner, M., Reisinger, D. M., and Richards, J. H., 1984, The beta-adrenergic receptor in the human neutrophil plasma membrane: Receptor-cyclase uncoupHng is associated with amplified GTP activation, J. Immunol. 132:1466–1471.PubMedGoogle Scholar
  49. Lagast, H., Pozzan, T., Waldvogel, F. A., and Lew, P. D., 1984, Phorbol myristate acetate stimulates ATP dependent calcium transport by the plasma membrane of neutrophils, J. Clin. Invest. 73:878–883.PubMedCrossRefGoogle Scholar
  50. Lew, P. D., Dayer, J.-M., Wollheim, C. B., and Pozzan, T., 1984, Effect of leukotriene B4, prostaglandin E2 and arachidonic acid on cytosolic free calcium in human neutrophils, FEBS Lett. 166:44–48.PubMedCrossRefGoogle Scholar
  51. Macara, L G., Marinetti, G. V., and Balduzzi, P. C., 1984, Transforming protein of avian sarcoma virus UR2 is associated with phosphatidylinositol kinase activity: Possible role in tumorigenesis, Proc. Natl. Acad. Sci. U.S.A. 81:2728–2732.PubMedCrossRefGoogle Scholar
  52. McPhail, L. C., Wolfson, M., Clayton, C., and Snyderman, R., 1984, Protein kinase C and neutrophil (PMN) activation: Differential effects of chemoattractants and phorbol myristate acetate (PMA), Fed. Proc. 43:1661.Google Scholar
  53. Molski, T. F. P., Naccache, P. H., Marsh, M. L., Kermode, J., Becker, E. L., and Sha’afi, R. L, 1984, Pertussis toxin inhibits the rise in intracellular concentration of calcium that is induced by chemotactic factors in rabbit neutrophils: Possible role of the “G proteins” in calcium mobilization, Biochem. Biophys. Res. Commun. 124:644–650.PubMedCrossRefGoogle Scholar
  54. Moolenar, W. H., Tertoolen, L. G. J., and deLaat, S. W., 1984, Phorbol ester and diacyl-glycerol mimic growth factors in raising cytoplasmic pH, Nature 312:371–374.CrossRefGoogle Scholar
  55. Naccache, P. H., Molski, T. F. P., Borgeat, P., and Sha’afi, R. I., 1984, Mechanism of action of leukotriene B4: Intracellular calcium redistribution in rabbit neutrophils, J. Cell. Physiol. 118:13–18.PubMedCrossRefGoogle Scholar
  56. Naccache, P. H., Molski, T. F. P., Borgeat, P., and Sha’afi, R. L, 1985, Phorbol esters inhibit the fMet-Leu-Phe and leukotriene B4 stimulated calcium mobilization and enzyme secretion in rabbit neutrophils, J. Biol. Chem. 260:2125–2131.PubMedGoogle Scholar
  57. Nakamura, T., and Ui, M., 1984, Islet activating protein, pertussis toxin, inhibits Ca2+ induced and guanine nucleotide dependent releases of histamine and arachidonic acid from rat mast cells, FEBS Lett. 173:414–418.PubMedCrossRefGoogle Scholar
  58. Niedel, J. E., Kuhn, L. J., and Vandenbark, G. R., 1983, Phorbol diester copurifies with the protein kinase C, Proc. Natl. Acad. Sci. U.S.A. 80:36–40.PubMedCrossRefGoogle Scholar
  59. Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–698.PubMedCrossRefGoogle Scholar
  60. O’Flaherty, J. T., Schmitt, J. D., McCall, C. E., and Wykle, R. L., 1984, Diacylglycerols enhance human neutrophil degranulation responses: Relevancy to a multiple mediator hypothesis of cell function, Biochem. Biophys. Res. Commun. 123:64–70.PubMedCrossRefGoogle Scholar
  61. Okajima, F., and Ui, M., 1984, ADP-ribosylation of the specific membrane protein by islet activating protein, pertussis toxin, associated with inhibition of a chemotactic peptide induced arachidonate release in neutrophils. A possible role of the toxin substrate in Ca2+ mobilizing biosignaling, J. Biol. Chem. 259:13863–13871.PubMedGoogle Scholar
  62. Okajima, F., Katada, T., and Ui, M., 1985, Coupling of the guanine nucleotide regulatory protein to chemotactic peptide receptors in neutrophil membranes and its uncoupling by islet-activating protein, pertussis toxin. A possible role of the toxin substrate in Ca2+ mobilizing receptors mediated signal transduction, J. Biol. Chem. 260:6761–6768.PubMedGoogle Scholar
  63. Oron, Y., Dascal, N., Nadler, E., and Lupu, M., 1985, Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes, Nature 313:141–143.PubMedCrossRefGoogle Scholar
  64. Petroski, R. J., Naccache, P. H., Becker, E. L., and Sha’afi, R. I., 1979, Effect of chemotactic factors on calcium levels of rabbit neutrophils. Am. J. Physiol. 237:C43-C49.PubMedGoogle Scholar
  65. Prentki, M., Wollheim, C. B., and Lew, P. D., 1984, Ca2+ homeostasis in permeabilized human neutrophils. Characterization of Ca2+ sequestering pools and the action of inositol 1,4,5-trisphosphate, J. Biol. Chem. 259:13777–13782.PubMedGoogle Scholar
  66. Repine, J. E., White, J. G., Clawson, C. C., and Holmes, B. M., 1974, Effects of phorbol myristate acetate on the metabolism and ultrastructure of neutrophils in chronic granulomatous disease, J. Clin. Invest. 54:83–90.PubMedCrossRefGoogle Scholar
  67. Rittenhouse-Simmons, S., 1979, Production of diglyceride from phosphatidylinositol in activated human platelets, J. Clin. Invest. 63:580–587PubMedCrossRefGoogle Scholar
  68. Robinson, J. M., Badwey, J. A., Karnovsky, M. L., and Karnovsky, M. J., 1984, Superoxide release by neutrophils: Synergistic effects of a phorbol ester and a calcium ionophore, Biochem. Biophys. Res. Commun. 122:734–739.PubMedCrossRefGoogle Scholar
  69. Rosoff, P. M., Stein, L. F., and Cantley, L. C., 1984, Phorbol esters induce differentiation of a pre B lymphocyte cell line by enhancing Na+/H+ exchange, J. Biol. Chem. 259:7056–7060.PubMedGoogle Scholar
  70. Rozengurt, E., Rodriguez-Pena, A., Coombs, M., and Sinnett-Smith, J., 1984, Diacylglycerol stimulates DNA synthesis and cell division in mouse 3T3 cells: Role of Ca2+-sensitive phospholipid dependent protein kinase, Proc. Natl. Acad. Sci. U.S.A. 81:5748–5752.PubMedCrossRefGoogle Scholar
  71. Sagi-Eisenberg, R., Lieman, H., and Pecht, I., 1985, Protein kinase C regulation of the receptor-coupled calcium signal in histamine secreting rat basophilic leukemia cells. Nature 313:59–60.PubMedCrossRefGoogle Scholar
  72. Schneider, C., Zanetti, M., and Romeo, D., 1981, Surface reactive stimuli selectively increase protein phosphorylation in human neutrophils, FEBS Lett. 127:4–8.PubMedCrossRefGoogle Scholar
  73. Sha’afi, R. I., Naccache, P. H., Molski, T. F. P., Borgeat, P., and Goetzl, E. J., 1981, Cellular regulatory role of leukotriene B4: Its effects on cation homeostasis in rabbit neutrophils, J. Cell. Physiol. 108:401–408.PubMedCrossRefGoogle Scholar
  74. Sha’afi, R. I., White, J. R., Molski, T. F. P., Shefcyk, J., Volpi, M., Naccache, P. H., and Feinstein, M. B., 1983, Phorbol 12-myristate 13-acetate activates rabbit neutrophils without an apparent rise in the level of intracellular free calcium, Biochem. Biophys. Res. Commun. 114:638–645.PubMedCrossRefGoogle Scholar
  75. Shefcyk, J., Yassin, R., Volpi, M., Molski, T. F. P., Naccache, P. H., Munoz, J. J., Becker, E. L., Feinstein, M. D., and Sha’afi, R. I., 1985, Pertussis but not cholera toxin inhibits the stimulated increase in actin association with the cytoskeleton in rabbit neutrophils: Role of the “G proteins” in stimulus response coupling, Biochem. Biophys. Res. Commun. 126:1174–1181.PubMedCrossRefGoogle Scholar
  76. Schell-Frederick, E. 1984, A comparison of the effects of soluble stimuli on free cytoplasmic and membrane bound calcium in human neutrophils. Cell Calcium 5:237–251.PubMedCrossRefGoogle Scholar
  77. Showell, H. J., Freer, R. J., Zigmond, S. H., Schiffmann, E., Aswanikumar, S., Corcoran, B., and Becker, E. L., 1976, The structure activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal enzyme secretion for neutrophils, J. Exp. Med. 143:1154–1169.PubMedCrossRefGoogle Scholar
  78. Showell, H. J., Williams, D., Becker, E. L., Naccache, P. H., and Sha’afi, R. I., 1979,Desensitization and deactivation of the secretory responsiveness of rabbit neutrophils induced by the chemotactic peptide, formyl-methionyl-leucyl-phenylalanine, J. Reticuloendothel. Soc. 25:139–150.PubMedGoogle Scholar
  79. Showell, H. J., Naccache, P. H., Borgeat, P., Picard, S., Vallerand, P., Becker, E. L., and Sha’afi, R. L, 1982, Characterization of the secretory activity of leukotriene B4 towards rabbit neutrophils, J. Immunol. 128:811–816.PubMedGoogle Scholar
  80. Shulz, I., 1980, Messenger role of calcium in function of pancreatic acinar cells. Am. J. Physiol. 239:G335-G347.Google Scholar
  81. Sklar, L. A., Jesaitis, A. J., and Painter, R. G., 1984, The neutrophil N-formyl peptide receptor: Dynamics of ligand receptor interactions and their relationship to cellular responses, Contemp. Top. Immunobiol. 14:29–82.PubMedGoogle Scholar
  82. Snyderman, R., and Pike, M. C., 1984, Transductional mechanisms of chemoattractant receptor on leukocytes, Contemp. Top. Immunobiol. 14:1–28.PubMedGoogle Scholar
  83. Southwick, F. S., and Stossel, T. P., 1983, Contractile proteins in leukocyte function, Semin. Hematol. 20:305–321.PubMedGoogle Scholar
  84. Storey, D. J., Shears, S. B., Kirk, C. J., and Michell, R. H., 1984, Stepwise enzymatic dephosphorylation of inositol 1,4,5-trisphosphate to inositol in liver. Nature 312:374–376.PubMedCrossRefGoogle Scholar
  85. Streb, H., Bayerdorffer, H., Haage, W., Irvine, R. F., and Shulz, I., 1984, Effect of inositol 1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas, J. Membr. Biol. 81:241–253.PubMedCrossRefGoogle Scholar
  86. Sugimoto, Y., Whitman, M., Cantley, L. C., and Erikson, R. L., 1984, Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol, Proc. Natl. Acad. Sci. U.S.A. 81:2117–2121.PubMedCrossRefGoogle Scholar
  87. Suzuki, Y., and Lehrer, R. I., 1980, NAD(P)H oxidase activity in human neutrophils stimulated by phorbol myristate acetate, J. Clin. Invest. 66:1409–1418.PubMedCrossRefGoogle Scholar
  88. Takayama, S., White, M. F., Lauris, V., and Kahn, R. C., 1984, Phorbol esters modulate insulin receptor phosphorylation and insulin action in cultured hepatoma cells, Proc. Natl. Acad. Sci. U.S.A. 81:7797–7801.PubMedCrossRefGoogle Scholar
  89. Taylor, M. V., Metcalf, J. C., Hesketh, T. R., Smith, G. A., and Moore, J. P., 1984, Mitogen increase phosphorylation of phosphoinositides in thymocytes, Nature 312:462–465.PubMedCrossRefGoogle Scholar
  90. Torres, M., and Coates, T. D., 1984, Neutrophil cytoplasts: Relationship of superoxide release and calcium pools. Blood 64:891–895.PubMedGoogle Scholar
  91. Volpi, M., Yassin, R., Naccache, P. H., and Sha’afi, R. I., 1983, Chemotactic factor causes rapid decreases in phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate in rabbit neutrophils, Biochem. Biophys. Res. Commun. 112:957–964.PubMedCrossRefGoogle Scholar
  92. Volpi, M., Yassin, R., Tao, W., Molski, T. F. P., Naccache, P. H., and Sha’afi, R. I., 1984, Leukotriene B4 mobilizes calcium without the breakdown of polyphosphoinositides and the production of phosphatidic acid in rabbit neutrophils, Proc. Natl. Acad. Sci. U.S.A. 81:5966–5969.PubMedCrossRefGoogle Scholar
  93. Volpi, M., Naccache, P. H., Molski, T. F. P., Shefcyk, J., Huang, C.-K., Marsh, M. L., Munoz, J., Becker, E. L., and Sha’afi, R. L, 1985, Pertussis toxin inhibits the formylmethionyl-leucyl-phenylalanine but not the phorbol ester stimulated changes in ion fluxes, protein phosphorylation and phospholipid metabolism in rabbit neutrophils: Role of the “G proteins” in excitation response coupling, Proc. Natl. Acad. Sci. U.S.A. 82:2708–2712.PubMedCrossRefGoogle Scholar
  94. White, J. R., Naccache, P. H., Molski, T. F. P., Borgeat, P., and Sha’afi, R. I., 1983, Direct demonstration of increased intracellular concentration of free calcium in rabbit and human neutrophils following stimulation by chemotactic factor, Biochem. Biophys. Res. Commun. 113:44–50.PubMedCrossRefGoogle Scholar
  95. White, J. R., Huang, C.-K., Hill, J. M., Jr., Naccache, P. H., Becker, E. L., and Sha’afi, R. I., 1984, Effect of phorbol 12-myristate 13-acetate and its analogue 4-a on protein phosphorylation, and phorbol 12,13-didecanoate lysosomal enzyme release in rabbit neutrophils, J. Biol. Chem. 259:8605–8611.PubMedGoogle Scholar
  96. Yano, K., Nakashima, S., and Nozawa, Y., 1983a, Coupling of polyphosphoinositide breakdown with calcium efflux in formyl-methionyl-leucyl-phenylalanine-stimulated rabbit neutrophils, FEBS Lett. 161:296–300.PubMedCrossRefGoogle Scholar
  97. Yano, K., Hattori, H., Imai, A., and Nozawa, Y., 1983b, Modification of positional distribution of fatty acids in phosphatidylinositol of rabbit neutrophils stimulated with formylmethionyl-leucyl-phenylalanine, Biochim. Biophys. Acta 752:137–144.PubMedGoogle Scholar
  98. Zavoico, G. B., Halenda, S. P., Sha’afi, R. I., and Feinstein, M. B., 1985, PMA inhibits thrombin stimulated Ca2+ mobihzation and phosphatidylinositol 4,5-bisphosphate hydrolysis in human platelets, Proc. Natl. Acad. Sci. U.S.A. 82:3859–3862.PubMedCrossRefGoogle Scholar
  99. Zwiller, J., Revel, M.-O., and Malviya, A. N., 1984, Protein kinase C catalyzes phosphorylation of guanylate cyclase in vitro, J. Biol. Chem. 260:1350–1353.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Paul H. Naccache
    • 1
  • Ramadan I. Sha’afi
    • 1
  1. 1.Departments of Pathology and PhysiologyUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations