Information Flow in the Calcium Messenger System

  • Howard Rasmussen
  • Itaru Kojima
  • Paula Barrett
Part of the New Horizons in Therapeutics book series (NHTH)


Work in the past 20 years has led to an ever-expanding appreciation of the intracellular messenger function of calcium ion [Ca2+]. What began as an interest in the role of Ca2+ in stimulus-response coupling in skeletal muscle has expanded to the point where Ca2+ is recognized as one of the few universal intracellular messengers involved in coupling a wide variety of stimuli to an equally diverse range of responses: Ca2+ participates in the control of neuro-, exocrine, and endocrine secretion, the contraction of all forms of muscle, fluid and electrolyte transport, energy and fuel metabolism, and growth and development. The control of these diverse tissue responses requires a considerably more elaborate system than simply a rise and fall in intracellular free Ca2+ concentration—the original model of the way Ca2+ was thought to serve its messenger function. Hence, it is more appropriate to introduce the concept of the calcium messenger system. Encompassed within this term are the cellular components involved in generating, terminating, transmitting, and receiving the Ca2+ message.


Insulin Secretion Myosin Light Chain Phorbol Ester Myosin Light Chain Kinase Aldosterone Secretion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelstein, R. S., Conti, M. A., and Pato, M. D., 1980, Regulation of myosin light chain kinase by reversible phosphorylation and calcium-calmodulin, Ann. N. Y. Acad. Sci. 356:142–150.PubMedCrossRefGoogle Scholar
  2. Aksoy, M. O., Murphy, R. A., and Kamm, K. E., 1982, Role of Ca2+ and myosin light chain phosphorylation in regulation of smooth muscle. Am. J. Physiol. 242:C109-C116.PubMedGoogle Scholar
  3. Albert, P. R., and Tashjian, A. H., Jr., 1984, Relationship of thyrotropin-releasing hormone-induced spike and plateau phases in cytosolic free Ca2+ concentrations to hormone secretion, J. Biol. Chem. 259:15350–15363.PubMedGoogle Scholar
  4. Aub, D. L., and Putney, J. W., Jr., 1984, Metabolism of inositol phosphates in parotid cells: Implication for the pathway of the phosphoinositide effect and for the possible messenger role of inositol triphosphate. Life Sci. 34:1347–1355.PubMedCrossRefGoogle Scholar
  5. Balls, S. D., Morisis, A., and Gunther, H. S., 1984, Phorbol 12-myristate 13-acetate, ionomycin or ouabain, and raised extracellular magnesium induce proliferation of chicken heart mesenchymal cells, Proe. Natl. Aead. Sci. U.S.A. 81:6418–6421.CrossRefGoogle Scholar
  6. Barrett, P. Q., Kojima, I., Kojima, K., and Rasmussen, H., 1985, Patterns of protein phosphorylation induced by angiotensin II in adrenal glomerulosa cells, Bioehem. J. (in press).Google Scholar
  7. Berridge, M. J., 1975, The interaction of cycHc nucleotides and calcium in the control of cellular activity. Adv. Cyelie Nueleotide Res. 6:1–98.Google Scholar
  8. Berridge, M. J., 1982, A novel signalling system based on the integration of phospholipid and calcium metabohsm, in: Caleium and Cell Function, Vol. Ill (W. H. Cheung, ed.), Academic Press, New York, pp. 1–37.Google Scholar
  9. Berridge, M. J., 1984, Inositol trisphosphate and diacylglycerol as second messengers, Bioehem. J. 220:345–360.Google Scholar
  10. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 213:315–321.CrossRefGoogle Scholar
  11. Bolton, T. B., 1979, Mechanisms of action of transmitters and other substances on smooth muscle, Physiol. Rev. 59:606–718.PubMedGoogle Scholar
  12. Borle, A. B., 1973, Calcium metabolism at the cellular level. Fed. Proe. 32:1944–1950.Google Scholar
  13. Borle, A. B., 1981, Control, modulation and regulation of cell calcium. Rev. Physiol. Bioehem. Pharmacol. 90:13–153.CrossRefGoogle Scholar
  14. Borle, A. B., and Snowdowne, K. W., 1982, Measurement of intracellular free calcium in monkey kidney cells with aequorin. Science 217:252–254.PubMedCrossRefGoogle Scholar
  15. Brostrom, C. O., Hunkeler, F. L., and Krebs, E. G., 1971, The regulation of skeletal muscle Phosphorylase kinase by Ca2+, J. Biol. Chem. 246:1961–1967.PubMedGoogle Scholar
  16. Brostrom, C., Bocckino, S. B., and Brostrom, M. A., 1983, Identification of a Ca2+ requirement for protein synthesis in eukaryotic cells, J. Biol. Chem. 258:14390–14399.PubMedGoogle Scholar
  17. Campbell, A. K., 1983, Intracellular Calcium, John Wiley & Sons, New York.Google Scholar
  18. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid dependent protein kinase by tumor promoting phorbol esters, J. Biol. Chem. 257:7847–7851.PubMedGoogle Scholar
  19. Chapman, R. A., 1979, Excitation-contraction coupling in cardiac muscle, Prog. Biophys. Mol. Biol. 35:1–52.PubMedCrossRefGoogle Scholar
  20. Charesi, R., Blackmore, P. F., Berthon, B., and Exton, J. H., 1983, Changes in free cytosolic Ca2+ in hepatocytes following alphai-adrenergic stimulation, J. Biol. Chem. 258:8769–8773.PubMedGoogle Scholar
  21. Cheung, W. Y., 1980, Calmodulin plays a pivotal role in cellular regulation. Science 207:19–27.PubMedCrossRefGoogle Scholar
  22. Cohen, P., 1979, The hormonal control of glycogen metaboHsm in mammalian muscle by multivalent phosphorylation, Biochem. Soc. Trans. 7:459–480.PubMedGoogle Scholar
  23. Cooper, J. A., Bowen-Pope, D. F., Raines, E., Ross, R., and Hunter, T., 1982, Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins. Cell 31:263–273.PubMedCrossRefGoogle Scholar
  24. Dale, M. M., and Penfield, A., 1984, Synergism between phorbol ester and A23187 in superoxide production by neutrophils, FEBS Lett. 175:170–172.PubMedCrossRefGoogle Scholar
  25. Denton, R. M., and McCormack, J. G., 1980, On the role of the calcium transport cycle in heart and other mammalian mitochondria, FEBS Lett. 119:1–8.PubMedCrossRefGoogle Scholar
  26. Delbeke, D., Kojima, I., Dannies, P. A., and Rasmussen, H., 1984, Synergistic stimulation of prolactin release by phorbol ester, A23187 and forskolin, Biochem. Biophys. Res. Commun. 123:735–741.PubMedCrossRefGoogle Scholar
  27. de Pont, J. J. H. H. M., and Fleurer-Jakobs, A. M. M., 1984, Synergistic effect of A23187 and a phorbol ester on amylase secretion from rabbit pancreatic acini, FEBS Lett. 170:64–68.CrossRefGoogle Scholar
  28. Downes, P., and Michell, R. H., 1982, Phosphatidylinositol 4-phosphate and phosphati-dylinositol 4,5-bis-phosphate: Lipids in search of a function. Cell Calcium 3:467–502.PubMedCrossRefGoogle Scholar
  29. Ebashi, S., Mikawa, T., Hirata, M., and Nonomura, Y., 1978, The regulatory role of calcium in muscle, Ann. N.Y. Acad. Sci. 307:451–461.PubMedCrossRefGoogle Scholar
  30. Exton, J. H., 1981, Molecular mechanisms involved in a-adrenergic responses, Mol. Cell. Endocrinol. 23:233–264.PubMedCrossRefGoogle Scholar
  31. Forder, J., Scriabine, A., and Rasmussen, H., 1985, TPA-induced contractions of vascular smooth muscle, J. Pharmacol. Exp. Ther. 235:267–273.PubMedGoogle Scholar
  32. Garrison, J. C., 1983, Role of Ca2+-dependent protein kinases in the response of hepatocytes to a-agonists, angiotensin II and suppressants, in: Isolation, Characterization and Use of Hepatocytes (R. A. Harris and N. W. Cornell, eds.), Elsevier, Amsterdam, pp. 551–559.Google Scholar
  33. Gennaro, R., Pozzan, T., and Romeo, D., 1984, Monitoring of cytosolic free Ca2+ and CSa-stimulated neutrophils, loss of receptor-modulated Ca2+ stores and Ca2+ uptake in granule-free cytoplasts, Proc. Natl. Acad. Sci. U.S.A. 81:1416–1420.PubMedCrossRefGoogle Scholar
  34. Gershengorn, M. C., and Thaw, C., 1983, Calcium influx is not required for TRH to elevate free cytoplasmic calcium in GH3 cell. Endocrinology 113:1522–1524.PubMedCrossRefGoogle Scholar
  35. Gerthoffer, W. T., and Murphy, R. A., 1983, Ca2+, myosin phosphorylation and relaxation of arterial smooth muscle. Am. J. Physiol. 245:C271-C277.PubMedGoogle Scholar
  36. Hedeskov, C. J., 1980, Mechanism of glucose-induced insulin secretion, Physiol. Rev. 60:442–509.PubMedGoogle Scholar
  37. Heiden, C.-H., and Westermark, B., 1984, Growth factors: Mechanism of action and relation to oncogenes. Cell 37:9–20.CrossRefGoogle Scholar
  38. Huang, J. S., Huang, S. S., and Deuel, T. F., 1984, Transforming protein of simian sarcoma virus stimulates autocrine growth of SSV-transformed cells through PDGF cell-surface receptors. Cell 39:79–87.PubMedCrossRefGoogle Scholar
  39. Irvine, R. F., Dawson, R. M. C., and Freinkel, N., 1982, Stimulated phosphatidylinositol turnover. A brief appraisal, in: Contemporary Metabolism, Vol. 2 (N. R. Freinkel, ed.). Plenum Press, New York, pp. 301–342.CrossRefGoogle Scholar
  40. Joseph, S. K., and Williamson, J. R., 1983, The origin, quantitation and kinetics of intracellular calcium mobilization by vasopressin and phenylephrine in hepatocytes, J. Biol. Chem. 258:10425–10432.PubMedGoogle Scholar
  41. Joseph, S. K., Thomas, A. P., Williams, R. J., Irvine, R. F., and Williamson, J. R., 1984, Myoinositol 1,4,5-triphosphate: A second messenger for the hormonal mobilization of intracellular Ca2+ in liver, J. Biol. Chem. 259:3077–3081.PubMedGoogle Scholar
  42. Kaibuchi, K., Takai, Y., Sawamura, M., Hoshijima, M., Fujikura, T., and Nishizuka, Y., 1983, Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation, J. Biol. Chem. 258:6701–6704.PubMedGoogle Scholar
  43. Katakami, Y., Kaibuchi, K., Sawamura, M., Takai, Y., and Nishizuka, Y., 1984, Synergistic action of protein kinase C and calcium for histamine release from rat peritoneal mast cells, Biochem. Biophys. Res. Commun. 121:573–578.PubMedCrossRefGoogle Scholar
  44. Katz, B., 1966, Nerve, Muscle, Synapse, McGraw-Hill, New York.Google Scholar
  45. Kerrick, W. G. L., Hoar, P. E., and Cassidy, P. S., 1980, Calcium-activated tension: The role of myosin light chain phosphorylation, Fed. Proc. 39:1558–1563.PubMedGoogle Scholar
  46. Kikkawa, U., Minakuchi, R., Takai, Y., and Nishizuka, Y., 1983, Calcium-activated phospholipid-dependent protein kinase (protein kinase C) from rat brain. Methods Enzymol. 99:288–299.PubMedCrossRefGoogle Scholar
  47. Kirk, C. J., Michell, R. H., and Hems, D. A., 1981, Phosphatidylinositol metaboHsm in rat hepatocytes stimulated by vasopressin, Biochem. J. 194:155–165.PubMedGoogle Scholar
  48. Kojima, I., Lippes, H., Kojima, K., andRasmussen, H., 1983, Aldosterone secretion: Effect of phorbol ester and A23187 and TPA, Biochem. Biophys. Res. Commun. 116:555–562.PubMedCrossRefGoogle Scholar
  49. Kojima, L, Kojima, K., Kreutter, D., and Rasmussen, H., 1984, The temporal integration of the aldosterone secretory response to angiotensin II occurs via two intracellular pathways, J. Biol. Chem. 259:14448–14457.PubMedGoogle Scholar
  50. Kojima, I., Kojima, K., and Rasmussen, H., 1985a, Characteristics of angiotensin III-, K2- and ACTH-induced calcium influx in adrenal glomerulosa cells, J. Biol. Chem. 260:9171–9176.PubMedGoogle Scholar
  51. Kojima, I., Kojima, K., and Rasmussen, H., 1985b, Role of calcium fluxes in the sustained phase of angiotensin Il-mediated aldosterone secretion from adrenal cells, J. Biol. Chem. 260:9177–9184.PubMedGoogle Scholar
  52. Kojima, I., Kojima, K., and Rasmussen, H., 1985c, Role of calcium and cAMP in the action of adrenocorticotropin on aldosterone secretion, J. Biol. Chem. 260:4248–4256.PubMedGoogle Scholar
  53. Kojima, I., Kojima, K., and Rasmussen, H., 1985d, Intracellular calcium and adenosine 3′,5′-cyclic monophosphate as mediators of potassium-induced aldosterone secretion, Biochem. J. 228:69–76.PubMedGoogle Scholar
  54. Martin, T. J. F., 1983, Thyrotropin-releasing hormone rapidly activates the phosphodiesterase hydrolysis of polyphosphoinositides in GH3 pituitary cells, J. Biol. Chem. 258:14816–14822.PubMedGoogle Scholar
  55. Martin, T. J. F., and Kowalchyk, T. A., 1984a, Evidence for the role of calcium and diacylglycerol as dual second messengers in thyrotropin-releasing hormone action: Involvement of diacylglycerol, Endocrinology 115:1517–1526.PubMedCrossRefGoogle Scholar
  56. Martin, T. F. J., and Kowalchyk, T. A., 1984b, Evidence for the role of calcium and diacylglycerol as dual second messengers in thyrotropin-releasing hormone action: Involvement of Ca2+, Endocrinology 115:1527–1536.PubMedCrossRefGoogle Scholar
  57. Mauger, J. P., Poggioli, J., Guesdon, F., and Claret, M., 1984, Noradrenaline, vasopressin and angiotensin increase Ca2+ influx by opening a common pool of Ca2+ channels in isolated rat liver cells, Biochem. J. 221:121–127.PubMedGoogle Scholar
  58. McCormack, J. G., and Denton, R. M., 1979, The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex, Biochem. J. 180:533–544.PubMedGoogle Scholar
  59. Means, A. R., and Dedman, J. R., 1980, Calmodulin—an intracellular calcium receptor. Nature 285:73–77.PubMedCrossRefGoogle Scholar
  60. Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415:81–147.PubMedGoogle Scholar
  61. Moolenaar, W. H., Tertoolen, L. G. J., and de Laat, S. W., 1984, Growth factors immediately raise cytoplasmic free Ca2+ in human fibroblasts, J. Biol. Chem. 259:8066–8069.PubMedGoogle Scholar
  62. Morgan, J. P., and Morgan, K. G., 1983, Vascular smooth muscle: The first recorded Ca2+ transients. Pflügers Arch. 395:75–77.CrossRefGoogle Scholar
  63. Morgan, J. P., and Morgan, K. G., 1984, Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein, J. Physiol. (Lond.) 351:156–167.Google Scholar
  64. Nichitta, C. V., and Williamson, J. R., 1984, Spermine, a regulator of mitochondrial calcium cycling, J. Biol. Chem. 259:12978–12983.Google Scholar
  65. Nishizuka, Y., 1983, A receptor-linked cascade of phospholipid turnover in hormone action, in: Endocrinology (K. Shizume, H. Imura, and H. Shimizu, eds.), Excerpta Medica, Amsterdam, pp. 15–24.Google Scholar
  66. Nishizuka, Y., 1984. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–698.PubMedCrossRefGoogle Scholar
  67. Pozzan, T. P., Arslan, P., Tsien, R. Y., and Rink, T. J., 1982, Antiimmunoglobulin, cytoplasmic free calcium, and capping in lymphocytes, J. Cell Biol. 94:335–340.PubMedCrossRefGoogle Scholar
  68. Putney, J. W., 1979, Stimulus-permeability coupling: Role of calcium in the receptor regulation of membrane permeability, Pharmacol. Rev. 30:209–245.Google Scholar
  69. Putney, J. W., 1982, Inositol lipids and cell stimulation in mammalian salivary gland, Cell Calcium 3:369–383.PubMedCrossRefGoogle Scholar
  70. Rasmussen, H., 1970, Cell communication, calcium ion and cycHc adenosine monophosphate, Science 170:404–412.PubMedCrossRefGoogle Scholar
  71. Rasmussen, H., 1981, Calcium and cAMP as Synarchic Mesengers, John Wiley & Sons, New York.Google Scholar
  72. Rasmussen, H., 1983, Pathways of amplitude and sensitivity modulation in the calcium messenger system, in: Calcium and Cell Function, Vol. 4 (W. Y. Cheung, ed.). Academic Press, New York, pp. 1–61.Google Scholar
  73. Rasmussen, H., and Barrett, P. W., 1984, Calcium messenger system: An integrated view, Physiol. Rev. 64:938–984.PubMedGoogle Scholar
  74. Rasmussen, H., and Waisman, D. M., 1982, Modulation of cell function in the calcium messenger system. Rev. Physiol. Biochem. Pharmacol. 95:111–148.CrossRefGoogle Scholar
  75. Rasmussen, H., Forder, J., Kojima, I., and Scriabine, A., 1984a, TPA-induced contraction of isolated rabbit vascular smooth muscle, Biochem. Biophys. Res. Commun. 122:776–784.Google Scholar
  76. Rasmussen, H., Kojima, I., Kojima, K., Zawalich, W., and Apfeldorf, W., 1984b, Calcium as intracellular messenger: Sensitivity modulation, C-kinase pathway and sustained cellular response, Adv. Cyclic Nucleotide Protein Phosphor. Res. 18:159–193.Google Scholar
  77. Robinson, J. M., Badwey, J. A., Karnovsky, M. L., andKamovsky, M. J., 1984, Superoxiderelease by neutrophils: Synergistic effects of a phorbol ester and a calcium ionophore, Biochem. Biophys. Res. Commun. 122:734–739.PubMedCrossRefGoogle Scholar
  78. Rubin, R. P., 1982, Calcium and Cellular Secretion, Plenum Press, New York.Google Scholar
  79. Sawyer, S. T., and Cohen, S., 1981, Enhancement of calcium uptake and phosphatidylinositol turnover by epidermal growth factor in A-431 cells. Biochemistry 20:6280–6286.PubMedCrossRefGoogle Scholar
  80. Sawyer, S. T., and Krantz, S. B., 1984, Erythropoietin stimulates ’ Ca2+ uptake in Friend virus-infected erythroid cells, J. Biol. Chem. 259:2769–2774.PubMedGoogle Scholar
  81. Scharff, O., Foder, B., and Skibsted, U., 1983, Hysteretic activation of the pump revealed by calcium transients in human red cells, Biochim. Biophys. Acta 730:295–305.PubMedCrossRefGoogle Scholar
  82. Schulz, I., 1980, Messenger role of calcium in function of pancreatic acinar cells. Am. J. Physiol. 239:G335-G347.PubMedGoogle Scholar
  83. Shears, S. B., and Kirk, C. J., 1984, Determination of mitochondrial calcium content in hepatocytes by a rapid cellular fractionation technique: Vasopressin stimulates mitochondrial Ca2+ uptake, Biochem. J. 219:383–389.PubMedGoogle Scholar
  84. Silver, P. J., and Stull, J. T., 1982, Regulation of myosin light chain and Phosphorylase phosphorylation in tracheal smooth muscle, J. Biol. Chem. 257:6145–6150.PubMedGoogle Scholar
  85. Smith, J. B., Smith, L., Brown, E. R., Barnes, D., Sabir, M. A., Davis, J. S., and Farese, R. v., 1984, Angiotensin II rapidly increases phosphatidic-phosphoinositide synthesis and phosphoinositide hydrolysis and mobilizes intracellular calcium in cultured arterial muscle cells, Proc. Natl. Acad. Sci. U.S.A. 81:7812–7816.PubMedCrossRefGoogle Scholar
  86. Snowdowne, K. W., and Borle, A. B., 1984, Changes in cytosolic ionized calcium induced by activators of secretion in GH3 cells. Am. J. Physiol. 246:E198-E201.PubMedGoogle Scholar
  87. Streb, H., and Schulz, I., 1983, Regulation of cytosolic free Ca2+ concentration in acinar cells of rat pancreas. Am. J. Physiol. 245:0347–0357.Google Scholar
  88. Streb, H., Irvine, R. F., Berridge, M. J., and Schulz, I., 1983, Release of from a nonmitochondrial store in pancreatic acinar cells by inositol-1,4,5-trisphosphate, Nature 306:67–69.PubMedCrossRefGoogle Scholar
  89. Studer, R. K., and Borle, A. B., 1983, Sex differences in cellular calcium metabolism of rat hepatocytes and in a-adrenergic activation of glycogen Phosphorylase, Biochim. Biophys. Acta 762:302–314.PubMedCrossRefGoogle Scholar
  90. Suematsu, E., Hirata, M., Hashimoto, T., and Kuriyama, H., 1983, Inositol 1,3,4-tris-phosphate releases Ca2+ from intracellular storage sites in skinned single cells of porcine coronary arteries, Biochem. Biophys. Res. Commun. 120:481–485.CrossRefGoogle Scholar
  91. Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y., 1979, Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids, J. Biol. Chem. 254:3692–3695.PubMedGoogle Scholar
  92. Takai, Y., Kishimoto, A., Kawahara, Y., Minakuchi, R., Sano, K., Kikkawa, U., Mori, T., Yu, B., Kaibuchi, K., and Nishizuka, Y., 1981, Calcium and phosphatidylinositol turnover as signalling for transmembrane control of protein phosphorylation, Adv. Cyclic Nucleotide Res. 14:301–313.PubMedGoogle Scholar
  93. Takai, Y., Kikkawa, U., Kaibuchi, K., and Nishizuka, Y., 1984, Membrane phospholipid metabohsm and signal transduction for protein phosphorylation. Adv. Cyclic Nucleotide Protein Phosphor. Res. 18:119–158.Google Scholar
  94. Trunek, A., Albert, F., Goldstein, P., and Schnitt-Verhulst, A.-M., 1985, Early steps of lymphocyte activation bypassed by synergy between calcium ionophores and phorbol ester. Nature 313:318–320.CrossRefGoogle Scholar
  95. Tsien, R. Y., Pozzan, T., and Rink, T. J., 1981, Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new intracellulariy trapped fluorescent indicator, J. Cell Biol. 94:325–334.CrossRefGoogle Scholar
  96. Wang, J. H., and Waisman, D. M., 1979, Calmodulin and its role in the second messenger system, Curr. Top. Cell Regul. 15:47–107.PubMedGoogle Scholar
  97. Weber, A., and Murray, J. M., 1973, Molecular control mechanisms in muscle contraction, Physiol. Rev. 53:612–673.PubMedGoogle Scholar
  98. Williamson, J. R., Cooper, R. H., and Hoek, J. R., 1981, Role of calcium in the hormonal regulation of liver metabolism, Biochim. Biophys. Acta 639:243–295.PubMedGoogle Scholar
  99. Zawalich, W., Brown, C., and Rasmussen, H., 1983, Insulin secretion: Combined effect of phorbol ester and A23187, Biochem. Biophys. Res. Commun. 117:448–455.PubMedCrossRefGoogle Scholar
  100. Zawalich, W., Zawalich, K., and Rasmussen, H., 1984, Insulin secretion: Combined tolbutamide, forskolin and TPA mimic action of glucose. Cell Calcium 5:551–558.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Howard Rasmussen
    • 1
  • Itaru Kojima
    • 1
  • Paula Barrett
    • 1
  1. 1.Departments of Cell Biology and Internal MedicineYale University School of MedicineNew HavenUSA

Personalised recommendations