Chemical Pharmacology of Ca2+ Channel Ligands

  • D. J. Triggle
  • A. Skattebol
  • D. Rampe
  • A. Joslyn
  • P. Gengo
Part of the New Horizons in Therapeutics book series (NHTH)


A variety of terms, including Ca2+ antagonist, Ca2+ channel blocker, and slow channel blocker, have been applied to a structurally heterogeneous group of agents including the clinically available verapamil, nifedipine, and diltiazem (Fig. 1; for general reviews see Fleckenstein, 1977, 1983). With the recent introduction of 1,4-dihydropyridine analogues of nifedipine that function as calcium channel activators (Fig. 2, Bay K 8644 and CGP 28 392; Schramm et al, 1983), a more appropriate generic title might be calcium channel ligands.


Calcium Channel Cardiac Muscle Calcium Channel Antagonist Antagonist Structure Channel Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Almers, W., McCleskey, E. W., and Palade, P. T., 1984, A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions, J. Physiol. (Lond.) 353:565–583.Google Scholar
  2. Bean, B. P., 1984, Nitrendipine block of cardiac calcium channels: High affinity binding to the inactivated state, Proc. Natl. Acad. Sci. U.S.A. 81:6388–6392.PubMedCrossRefGoogle Scholar
  3. Bellemann, P., Schade, A., and Towart, R., 1983, Dihydropyridine receptor in rat brain labelled with [H]nimodipine, Proc. Natl. Acad. Sci. U.S.A. 80:2356–2360.PubMedCrossRefGoogle Scholar
  4. Bolger, G. T., Gengo, P. T., Klockowski, R., Luchowski, E., Siegel, H., Janis, R. A., Toggle, A. M., and Triggle, D. J., 1983, Characterization of binding of the Ca2+ channel antagonist, Hilnitrendipine, to guinea pig ileal smooth muscle, J. Pharmacol. Exp. Ther. 225:291–309.PubMedGoogle Scholar
  5. Borden, L. A., Czajkowski, C., Chan, C. Y., and Farb, D. H., 1984, Benzodiazepine receptor synthesis and degradation by neurons in culture. Science 226:857–860.PubMedCrossRefGoogle Scholar
  6. Edelhoch, H., and Osborne, J. C., Jr., 1976, The thermodynamic basis of the stability of proteins, nucleic acids and membranes. Adv. Protein Chem. 30:183–250.PubMedCrossRefGoogle Scholar
  7. Erman, R. D., Yamamura, H. I., and Roeske, W. R., 1983, The ontogeny of specific binding sites for the calcium channel antagonist, nitrendipine, in mouse heart and brain. Brain Res. 278:327–331.PubMedCrossRefGoogle Scholar
  8. Fleckenstein, A., 1977, Specific pharmacology of calcium in myocardium, cardiac pacemakers and vascular smooth muscle, Annu. Rev. Pharmacol. Toxicol. 17:149–166.PubMedCrossRefGoogle Scholar
  9. Fleckenstein, A., 1983, Calcium Antagonism in Heart and Smooth Muscle. Experimental Facts and Therapeutic Prospects, Wiley Interscience, New York.Google Scholar
  10. Fossheim, R., Svarteng, K., Mostad, A., Romming, C., Shefter, E., and Triggle, D. J., 1982, Crystal structures and pharmacologic activities of calcium channel antagonists: 2,6-Dimethyl-3,5-dicarbomethoxy-4-(unsubstituted, 3-methyl, 4-methyl, 3-nitro, 4-nitro, and 2,4-dinitrophenyl)-l,4-dihydropyridine, J. Med. Chem. 25:126–131.PubMedCrossRefGoogle Scholar
  11. Frankenhaueser, B., and Hodgkin, A. L., 1957, The action of calcium on the electrical properties of squid axons, J. Physiol. (Lond.) 137:218–244.Google Scholar
  12. Galizzi, J. P., Fosset, M., and Lazdunski, M., 1984, Properties of receptors for the Ca2+-channel blocker verapamil in transverse-tubule membranes of skeletal muscle, Eur. J. Biochem. 144:211–215.PubMedCrossRefGoogle Scholar
  13. Gardner, J. M., and Fambrough, D. M., 1979, Acetylcholine receptor degradation measured by density labelling: Effects of cholinergic ligands and evidence against recycling, Cell 16:661–674.PubMedCrossRefGoogle Scholar
  14. Gilman, A. G., 1984, G Proteins and dual control of adenylate cyclase. Cell 36:577–579.PubMedCrossRefGoogle Scholar
  15. Glossman, H., Ferry, D. R., Lübbecke, F., Mewes, R., and Hofmann, F., 1982, Calcium channels: Direct identification with radioligand binding studies, Trends Pharm. Sci. 3:431–437.CrossRefGoogle Scholar
  16. Gomperts, B. D., 1983, Involvement of guanine nucleotide-binding protein in the gating of by receptors. Nature 306:64–66.PubMedCrossRefGoogle Scholar
  17. Gould, R. J., Murphy, K. M. M., and Snyder, S. H., 1982, [3H]Nitrendipine-labeled calcium channels discriminate inorganic calcium agonists and antagonists, Proc. Natl. Acad. Sci. U.S.A. 79:3656–3660.Google Scholar
  18. Halvorsen, S. W., and Nathanson, N. M., 1984, Ontogenesis of physiological responsiveness and guanine nucleotide sensitivity of cardiac muscarinic receptors during chick embryonic development. Biochemistry 23:5813–5821.PubMedCrossRefGoogle Scholar
  19. Hamilton, C. A., Dalrymple, H. W., Reid, J. L., and Summer, D. J., 1984, The recovery of a-adrenoceptor function and binding sites after phenoxybenzamine. An index of receptor turnover, Naunyn Schmiedebergs Arch. Pharmacol. 325:34–41.PubMedCrossRefGoogle Scholar
  20. Hess, P., and Tsien, R. W., 1984, Mechanism of ion permeation through calcium channels. Nature 309:453–456.PubMedCrossRefGoogle Scholar
  21. Hess, P., Lansman, J. B., and Tsien, R. W., 1984, Different modes of Ca channel gating behavior favored by dihydropyridine Ca agonists and antagonists. Nature 311:538–544.PubMedCrossRefGoogle Scholar
  22. Hille, B., 1977, Local anesthetics: Hydrophihc and hydrophobic pathways for the drugreceptor reaction, J. Gen. Physiol. 69:497–515.PubMedCrossRefGoogle Scholar
  23. Hille, B., 1984, Modifiers of Gating, in: Ionic Channels of Excitable Membranes Sinauer Associates, Sunderland, A, pp. 303–328.Google Scholar
  24. Hof, R. P., Rüegg, U. T., Hof, A., and Vogel, A., 1985, Stereoselectivity at the calcium channel: Opposite action of the enantiomers of a 1, 4-dihydropyridine, J. Cardiovasc. Pharmacol. 7:689–693.PubMedCrossRefGoogle Scholar
  25. Hondeghem, L. M., and Katzung, B. G., 1977, Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels, Biochim. Biophys. Acta 472:373–398.Google Scholar
  26. Hughes, S. M., 1983, Are guanine nucleotide binding proteins a distinct class of regulatory proteins? FEBS Lett. 164:1–8.PubMedCrossRefGoogle Scholar
  27. Janis, R. A., and Scriabine, A., 1983, Sites of action of Ca2+ channel inhibitors. Biochem. Pharmacol 32:3499–3507.PubMedCrossRefGoogle Scholar
  28. Janis, R. A., and Triggle, D. J., 1983, New developments in Ca2+ channel antagonists, J. Med. Chem. 26:775–785.PubMedCrossRefGoogle Scholar
  29. Janis, R. A., Rampe, D., Sarmiento, J. G., and Triggle, D. J., 1984a, Specific binding of a calcium channel activator, [3H]Bay K 8644 to membranes from cardiac muscle and brain, Biochem. Biophys. Res. Commun. 121:317–323.PubMedCrossRefGoogle Scholar
  30. Janis, R. A., Sarmiento, J. G., Maurer, S. C., Bolger, G. T., and Triggle, D. J., 1984b, Characteristics of the binding of [3H]Nitrendipine to rabbit ventricular membranes: Modification by other Ca2+ channel antagonists and by the Ca2+ channel agonist, Bay K 8644, J. Pharmacol Exp. Ther. 231:8–15.PubMedGoogle Scholar
  31. Kazazoglou, T., Schmid, A., Renaud, J. R., and Lazdunski, M., 1983, Ontogenicappearance of Ca2+ channels characterized as binding sites for nitrendipine during development of nervous, skeletal and cardiac muscle systems in the rat, FEBS Lett. 164:75–79.PubMedCrossRefGoogle Scholar
  32. Krupp, M. N., Connolly, D. T., and Lane, M. D., 1982, Synthesis, turnover and downregulation of epidermal growth factor receptors in human A431 epidermoid carcinoma cells and skin fibroblasts, J. Biol. Chem. 257:11489–11496.PubMedGoogle Scholar
  33. Langs, D. A., and Triggle, D. J., 1985, Conformational features of calcium channel agonist and antagonist analogs of nifedipine, Mol. Pharmacol. 27:544–548.PubMedGoogle Scholar
  34. Lee, K. S., and Tsien, R. W., 1983, Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialyzed heart cells. Nature 302:790–794.PubMedCrossRefGoogle Scholar
  35. Leff, S. E., Gariano, R., and Creese, L, 1984, Dopamine receptor turnover rates in rat striatum are age-dependent, Proc. Natl. Acad. Sci. U.S.A. 81:3910–3914.PubMedCrossRefGoogle Scholar
  36. Loev, B., Goodman, M. M., Snader, K. M., Tedeschi, R., and Macko, E., 1974, “Hantzsch-type” dihydropyridine hypotensive agents, J. Med. Chem. 17:956–965.Google Scholar
  37. Luchowski, E., Yousif, F., Triggle, D. J., Maurer, S. C., Sarmiento, J. G., and Janis, R. A., 1984, Effects of metal cations and calmodulin antagonists on [3H]Nitrendipine binding in smooth and cardiac muscle, J. Pharmacol. Exp. Ther. 230:607–613.PubMedGoogle Scholar
  38. Mauger, J. P., Sladeczek, F., and Bockaert, J., 1982, Characteristics and metabolism of ai-adrenergic receptors in a nonfusing muscle cell line, J. Biol. Chem. 257:875–879.PubMedGoogle Scholar
  39. McDonald, T. F., Pelzer, D., and Trautwein, W., 1984, Cat ventricular muscle treated with D 600: Characteristics of calcium channel block and unblock, J. Physiol. (Lond.) 352:217–241.Google Scholar
  40. Miller, R. J., and Freedman, S. B., 1984, Are dihydropyridine binding sites voltage-sensitive calcium channels? Life Sci. 34:1205–1221.PubMedCrossRefGoogle Scholar
  41. Molski, T. F. P., Naccache, P. H., Marsh, M. L., Kermode, T., Becker, E. L., and Sha’afi, R. I., 1984, Pertussis toxin inhibits the rise in the intracellular concentration of free calcium that is induced by chemotactic factors in rabbit neutrophils: Possible role of the “G proteins” in calcium mobilization, Bioehem. Biophys. Res. Commun. 124:664–650.CrossRefGoogle Scholar
  42. Opie, L. H., 1984, Calcium ions, drug action and the heart—with special reference to calcium antagonist drugs, Pharmacol. Ther. 25:271–295.PubMedCrossRefGoogle Scholar
  43. Pelzer, D., Trautwein, W., and McDonald, T. F., 1982, Calcium channel block and recovery from block in mammalian ventricular muscle treated with organic channel inhibitors, Pflüegers Arch. 394:97–105.CrossRefGoogle Scholar
  44. Rampe, D., Janis, R. A., and Triggle, D. J., 1984, Interaction of Bay K 8644, a 1,4-dihydropyridine Ca2+ channel activator: Dissociation of binding and functional effects in brain synaptosomes, J. Neurochem. 43:1688–1692.PubMedCrossRefGoogle Scholar
  45. Renaud, J. F., Romey, G., Lomget, A., and Lazdunski, M., 1981, Differentiation of the fast Na+ channel in embryonic heart cells: Interaction of the channel with neurotoxins, Proc. Natl. Acad. Sci. U.S.A. 78:5348–5352.PubMedCrossRefGoogle Scholar
  46. Renaud, J. F., Kazazoglou, T., Schmid, A., Romey, G., and Lazdunski, M., 1984, Differentiation of receptor sites for [3H]Nitrendipine in chick hearts and physiological relation to the slow Ca2+ channel and to excitation-contraction coupling, Eur. J. Bioehem. 139:673–681.CrossRefGoogle Scholar
  47. Rodenkirchen, R., Bayer, R., Steiner, R., Bossert, F., Meyer, H., and Moller, E., 1979, Structure-activity studies on nifedipine in isolated cardiac muscles, Naunyn Sehmiedebergs Arch. Pharmacol. 310:69–78.CrossRefGoogle Scholar
  48. Rosenberger, L. B., and Triggle, D. J., 1978, Calcium, calcium translocation and specific calcium antagonists, in: Calcium and Drug Action (G. B. Weiss, ed.), Plenum Press, New York, pp. 3–31.Google Scholar
  49. Sanguinetti, M. C., and Kass, R. S., 1984a, Voltage-dependent block of calcium channel current in the calf cardiac Purkinje fiber by dihydropyridine calcium channel antagonists, Cire. Res. 55:336–348.Google Scholar
  50. Sanguinetti, M. C., and Kass, R., 1984b, Regulation of cardiac calcium current and contractile activity by the dihydropyridine Bay K 8644 is voltage-dependent, J. Mol. Cell. Cardiol. 16:667–670.PubMedCrossRefGoogle Scholar
  51. Schmid, A., Renaud, J. F., Fosset, M., Meaux, J. P., and Lazdunski, M., 1984, The ni-trendipine-sensitive Ca2+ channel in chick muscle cells and its appearance during myogenesis in vitro and in vivo, J. Biol. Chem. 259:11366–11372.PubMedGoogle Scholar
  52. Schramm, M., Thomas G., Towart, F., and Franckowiak, G., 1983, Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature 303:535–537.PubMedCrossRefGoogle Scholar
  53. Schwartz, A., and Triggle, D. J., 1984, Cellular action of calcium channel blocking drugs, Annu. Rev. Med. 35:325–339.PubMedCrossRefGoogle Scholar
  54. Scidel, W., Meyer, H., Bom, L., Kazda, S., and Dompert, W., 1984, Rigid calcium antagonists of the nifedipine type: Geometrical requirements for the dihydropyridine receptor. Abstr. Am. Chem. Soc. 187.Google Scholar
  55. Standen, N. B., and Stanfield, P. R., 1982, A binding-site model for calcium channel inactivation that depends on calcium entry, Proc. R. Soc. Lond. [Biol.] 217:101–110.CrossRefGoogle Scholar
  56. Su, C. M., Swamy, V. C., and Triggle, D. J., 1984, Calcium channel activation in vascular smooth muscle by Bay K 8644, Can. J. Physiol. Pharmacol. 62:1401–1410.PubMedCrossRefGoogle Scholar
  57. Triggle, A. M., Shefter, E., and Triggle, D. J., 1980, Crystal structures of calcium channel antagonists: 2,6-DimethyI-3,5-dicarbomethoxy-4[2-nitro,-3-cyano-, 4-(dimethylamino)- and 2,3,4,5,6,-pentafluorophenyl]-l,4-dihydropyridine, J. Med. Chem. 23:1442–1445.Google Scholar
  58. Triggle, D. J., 1984, Ca2+ channels revisited: Problems and promises,Trends Pharmacol. Sci. 5:4–5.Google Scholar
  59. Triggle, D. J., and Janis, R. A., 1984, Calcium channel antagonists: New perspectives from the radioligand binding assay, in: Modern Methods in Pharmacology, Vol. II (N. Back and S. Spector, eds.), Alan R. Liss, New York, pp. 1–28.Google Scholar
  60. Triggle, D. J., and Janis, R. A., 1985, The 1,4-dihydropyridine receptor: A regulatory component of the Ca2+ channel, J. Cardiovasc. Pharmacol. 6:894–955.Google Scholar
  61. Triggle, D. J., and Swamy, V. C., 1983, Calcium antagonists: Some chemical-pharmacological aspects,Circ. Res. 52(Suppl. I): 17–28.Google Scholar
  62. Weiland, G. A., Minneman, K. P., and Molinoff, P. B., 1980, Thermodynamics of agonist and antagonist interactions with mammalian ß-adrenergic receptors, Mol. Pharmacol. 18:341–347.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • D. J. Triggle
    • 1
  • A. Skattebol
    • 1
  • D. Rampe
    • 1
  • A. Joslyn
    • 1
  • P. Gengo
    • 1
  1. 1.Department of Biochemical Pharmacology, School of PharmacyState University of New York at BuffaloBuffaloUSA

Personalised recommendations