Shifts between Modes of Calcium Channel Gating as a Basis for Pharmacological Modulation of Calcium Influx in Cardiac, Neuronal, and Smooth-Muscle-Derived Cells

  • A. P. Fox
  • P. Hess
  • J. B. Lansman
  • B. Nilius
  • M. C. Nowycky
  • R. W. Tsien
Part of the New Horizons in Therapeutics book series (NHTH)


When Ca2+ channels open in response to an appropriate change in membrane potential, they allow Ca2+ ions to move down their electrochemical gradient into the cytoplasm. This inflow of Ca2+ not only transfers depolarizing charge into excitable cells but also carries a specific message to be decoded by Ca2+ receptor proteins. The signal leads to the initiation of contraction in heart and smooth muscle cells, transmitter release from nerve cell synaptic terminals, hormone secretion by gland cells, and other important cellular responses (Hagiwara and Byerly, 1981, 1983; Reuter, 1983; Tsien, 1983). In linking membrane potential changes to the delivery of a messenger substance, Ca2+ channels perform a function that is vital and possibly unique (Tsien et al., 1983; Hille, 1984).


Channel Activity Dorsal Root Ganglion Neuron Heart Cell Smooth Muscle Cell Line Single Calcium Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bean, B. P., 1985a, Nitrendipine block of cardiac calcium channels: High-affinity binding to the inactivated state, Proc. Natl. Acad. Sci. U.S.A. 81:6388–6392.CrossRefGoogle Scholar
  2. Bean, B. P., 1985b, Two kinds of calcium channels in atrial cells from dog and frog hearts, Biophys. J. 47:496a.Google Scholar
  3. Bean, B. P., Nowycky, M. C., and Tsien, R. W., 1984, ß-Adrenergic modulation of calcium channels in frog ventricular heart cells. Nature 307:371–375.PubMedCrossRefGoogle Scholar
  4. Brown, A. M., Camerer, H., Kunze, D. L., and Lux, H. D., 1982, Similarity of unitary Ca2+; currents in three different species. Nature 299:156–158.PubMedCrossRefGoogle Scholar
  5. Brown, A. M., Kunze, D. L., and Yatani, A., 1984, The agonist effect of dihydropyridines on Ca channels, Nature 311:570–572.PubMedCrossRefGoogle Scholar
  6. Brum, G., Osterrieder, W., and Trautwein, W., 1984, β-Adrenergic increase in the calcium conductance of cardiac myocyte studies with the patch clamp, Pfluegers Arch. 401:111–118.CrossRefGoogle Scholar
  7. Cachelin, A. B., dePeyer, J. E., Kokubun, S., and Reuter, H., 1983, Calcium channel modulation by 8-bromo-cyclic AMP in cultured heart cells. Nature 304:402–404.CrossRefGoogle Scholar
  8. Caffrey, J. M., Josephson, I. R., and Brown, A. M., 1985, Calcium channels in smooth muscle: Dihydropyridine action, Biophys. J. 47:265a.Google Scholar
  9. Carbone, E., and Lux, H. D., 1984b, A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurons, Nature 310:501–502.PubMedCrossRefGoogle Scholar
  10. Cavalie, A., Ochi, R., Pelzer, D., and Trautwein, W., 1983, Elementary currents through Ca2+ channels in guinea pig myocytes, Pfluegers Arch. 398:284–297.CrossRefGoogle Scholar
  11. Cavalie, A., Pelzer, D., and Trautwein, W., 1985, Modulation of the gating properties of single calcium channels by D600 in guinea-pig ventricular myocytes, J. Physiol. (Lond.) 258:59P.Google Scholar
  12. Coronado, R., and Affolter, H., 1985, Kinetics of dihydropyridine-sensitive single calcium channels from purified muscle transverse tubules, Biophys. J. 47:434a.Google Scholar
  13. Dunlap, K., 1985, Forskolin prolongs action potential duration and blocks potassium current in embryonic chick sensory neurons, Pfluegers Arch. 403:170–174.CrossRefGoogle Scholar
  14. Eckert, R., and Chad, J. D., 1984, Inactivation of Ca channels. Prog. Biophys. Mol. Biol. 44:215–267.PubMedCrossRefGoogle Scholar
  15. Forscher, P., and Oxford, G. S., 1985, Modulation of calcium channels by norepinephrine in internally dialyzed avian sensory neurons, J. Gen. Physiol. 85:743–763.PubMedCrossRefGoogle Scholar
  16. Fox, A. P., Hess, P., Lansman, J. B., Nowycky, M. C., and Tsien, R. W., 1984, Slow variations in the gating properties of single calcium channels in guinea pig heart cells, chick neurons and neuroblastoma cells, J. Physiol. (Lond.) 353:75P.Google Scholar
  17. Franckowiak, G., Bechem, M., Schramm, M., and Thomas, G., 1985, The optical isomers of the 1,4-dihydropyridine Bay K 8644 show opposite effects on Ca channels, Eur. J. Pharmacol. 114:223–226.PubMedCrossRefGoogle Scholar
  18. Hagiwara, S., and Byerly, L., 1981, Calcium channel, Anna. Rev. Neurosci. 4:69–125.CrossRefGoogle Scholar
  19. Hagiwara, S., and Byeriy, L., 1983, The calcium channel, Trends Neurosci. 6:189–193.CrossRefGoogle Scholar
  20. Kamill, O., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch- clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. 391:85–100.CrossRefGoogle Scholar
  21. Hess, P., and Tsien, R. W., 1984, Mechanism of ion permeation through calcium channels. Nature 309:453–456.PubMedCrossRefGoogle Scholar
  22. Hess, P., Lansman, J. B., and Tsien, R. W., 1984, Different modes of Ca channel gating behavior favored by dihydropyridine Ca agonists and antagonists, Nature 311:538–544.PubMedCrossRefGoogle Scholar
  23. Hess, P., Lansman, J. B., and Tsien, R. W., 1985a, Mechanism of calcium channel modulation by dihydropyridine agonists and antagonists, in: Control and Manipulation of Calcium Movement (J. R. Parratt, ed.). Raven Press, New York.Google Scholar
  24. Hess, P., Lansman, J. B., and Tsien, R. W., 1986b, Calcium channel selectivity for divalent and monovalent cations. Voltage- and concentration-dependence of single channel current in guinea pig ventricular heart cells, J. Gen. Physiol, (in press).Google Scholar
  25. Hille, B., 1977, Local anesthetics: Hydrophilic and hydrophobic pathways for the drug- receptor reaction, J. Gen. Physiol. 69:497–515.PubMedCrossRefGoogle Scholar
  26. Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer Associates, Sunderland, MA.Google Scholar
  27. Hondeghem, L. M., and Katzung, B. G., 1977, Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels, Biochim. Biophys. Acta 472:373–398.PubMedGoogle Scholar
  28. Isenberg, G., and Klockner, U., 1985, Calcium currents of smooth muscle cells isolated from the urinary bladder of the guinea-pig: Inactivation, conductance and selectivity is controlled by micromolar amounts of [Ca]., J. Physiol. (Lond.) 358:60P.Google Scholar
  29. Josephson, I. R., Caffrey, J. M., and Brown, A. M., 1985, Single Ca channels in isolated smooth muscle cells, Science (in press).Google Scholar
  30. Kimes, B. W., and Brandt, B. L., 1976, Characterization of two putative smooth muscle cell lines from rat thoracic aorta, Exp. Cell Res. 89:349–366.Google Scholar
  31. Kokubun, S., and Reuter, H., 1984, Dihydropyridine derivatives prolong the open state of Ca channels in cultured cardiac cells, Proc. Natl. Acad. Sci. U.S.A. 81:4824–4827.PubMedCrossRefGoogle Scholar
  32. Kongsamut, S., Freedman, S. B., and Miller, R. J., 1985, Dihydropyridine sensitive calcium channels in a smooth muscle cell line, Biophys. Biochem. Res. Commun. (in press).Google Scholar
  33. Lansman, J. B., Hess, P., and Tsien, R. W., 1986, Blockade of current through single Ca channels from guinea-pig ventricular heart cells by Cd, Mg and Ca, J. Gen. Physiol. (in press).Google Scholar
  34. Lee, K. S., and Tsien, R. W., 1983, Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialyzed heart cells. Nature 302:790–794.PubMedCrossRefGoogle Scholar
  35. Lee, K. S., Akaike, N., and Brown, A. M., 1980, The suction pipette method for internal perfusion and voltage clamp of small excitable cells, J. Neurosci. Methods 2:51–78.PubMedCrossRefGoogle Scholar
  36. Lee, K. S., Marban, E., and Tsien, R. W., 1985, Inactivation of calcium channels in mammalian heart cells. Joint dependence on membrane potential and intracellular calcium, J. Physiol. (Lond.) 364:395–411.Google Scholar
  37. Miller, R. J., and Freedman, S. B., 1984, Are dihydropyridine binding sites voltage sensitive calcium channels? Life Sciences 34:1205–1221.PubMedCrossRefGoogle Scholar
  38. Mitra, R. L., and Morad, M., 1985, Gastric smooth muscle cells have only Ca2+ and Ca2+- activated K+ channels, Biophys. J. 47:66a.Google Scholar
  39. Nilius, B., Hess, P., Lansman, J. B., and Tsien, R. W., 1985, A novel type of cardiac calcium channel in ventricular cells. Nature 316:443–446.PubMedCrossRefGoogle Scholar
  40. Noon, J. P., Rice, P. J., and Baldessarini, R. J., 1978, Calcium leakage as a cause of the high resting tension in vascular smooth muscle from the spontaneously hypertensive rat, Proc. Natl. Acad. Sci. U.S.A. 75:1605–1607.PubMedCrossRefGoogle Scholar
  41. Nowycky, M. C., Fox, A. P., and Tsien, R. W., 1984, Two components of calcium channel current in chick dorsal root ganglion cells, Biophys. J. 45:36a.Google Scholar
  42. Nowycky, M. C., Fox, A. P., and Tsien, R. W., 1985a, Long-opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K 8644, Proc. Natl. Acad. Sci. U.S.A. 82:2178–2182.PubMedCrossRefGoogle Scholar
  43. Nowycky, M. C., Fox, A. P., and Tsien, R. W., 1985b, Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443.PubMedCrossRefGoogle Scholar
  44. Ochi, R., Hino, N., and Niimi, Y., 1984, Prolongation of calcium channel open time by the dihydropyridine derivative Bay K 8644 in cardiac myocytes, Proc. Jpn. Acad. [B] 60:153–156.CrossRefGoogle Scholar
  45. Reuter, H., 1983, Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301:569–574.PubMedCrossRefGoogle Scholar
  46. Reuter, H., Stevens, C. F., Tsien, R. W., and Yellen, G., 1982, Properties of single calcium channels in cultured cardiac cells, Nature 297:501–504.PubMedCrossRefGoogle Scholar
  47. Sanguinetti, M. C., and Kass, R. S., 1984, Voltage-dependent block of calcium channel current in the calf cardiac Purkinje fiber by dihydropyridine calcium channel antagonists, Circ. Res. 55:336–348.PubMedGoogle Scholar
  48. Schramm, M., Thomas, G., Towart, R., and Franckowiak, G., 1983, Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature. 303:535–531.PubMedCrossRefGoogle Scholar
  49. Siegelbaum, S. A., and Tsien, R. W., and 1983, Modulation of gated ion channels as a mode of transmitter action, Trends Neurosci. 6:307–313.CrossRefGoogle Scholar
  50. Sperelakis, N., 1985, Phosphorylation hypothesis of the myocardial slow channels and control of Ca influx, in: Cardiac Electrophysiology and Arrhythmias (D. P. Zipes and J. Jalife, eds.) Grune and Stratton, Orlando, Florida, pp. 123–135.Google Scholar
  51. Thayer, S. A., Stein, L., and Fairhurst, A. S., 1984, Endogenous modulator of calcium channels, in: IUPHAR 9th International Congress of Pharmacology Macmillan, London, p. 891P.Google Scholar
  52. Thomas, G., Chung, M., and Cohen, C. J., 1985, A dihydropyridine (Bay K 8644) that enhances calcium currents in guinea pig and calf myocardial cells: A new type of positive inotropic agent, Circ. Res. 56:87–96.PubMedGoogle Scholar
  53. Tsien, R. W., 1983, Calcium channels in excitable cell membranes, Annu. Rev. Physiol. 45:341–358.PubMedCrossRefGoogle Scholar
  54. Tsien, R. W., Bean, B. P., Hess, P., and Nowycky, M., 1983, Calcium channels: Mechanisms of ß-adrenergic modulation and ion permeation. Cold Spring Harbor Symp. Quant. Biol. 48:201–212.PubMedCrossRefGoogle Scholar
  55. Watanabe, A. M., Lindemann, J. P., Jones, L. R., Besch, H. R., Jr., and Bailey, J. C., 1981, Biochemical mechanisms mediating neural control of the heart, in:Disturbances in Neurogenic Control of the Circulation, American Physiological Society, Bethesda.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • A. P. Fox
    • 1
  • P. Hess
    • 1
  • J. B. Lansman
    • 1
  • B. Nilius
    • 1
  • M. C. Nowycky
    • 1
  • R. W. Tsien
    • 1
  1. 1.Department of PhysiologyYale University School of MedicineNew HavenUSA

Personalised recommendations