The Erythrocyte Anion-Exchange Protein

Primary Structure Deduced from the cDNA Sequence and a Model for Its Arrangement within the Plasma Membrane
  • Ron R. Kopito
  • Harvey F. Lodish
Part of the New Horizons in Therapeutics book series (NHTH)

Overview

A full-length cDNA encoding the mouse erythrocyte anion-exchange protein band 3 has been isolated and sequenced. Homology between the amino acid sequence deduced from this cDNA and that of published fragments of human band 3 confirms its identity. A model of the topology of band 3 within the plasma membrane is proposed that is based on published biochemical data and the deduced amino acid sequence. Twelve hydrophobic and amphipathic regions in the anion-exchange domain are proposed to span the membrane as α-helices, resulting in both C and N termini in the interior of the cell. The possibility is considered that these transmembrane helices are organized to form two hydrophilic channels per band 3 monomer, which undergo conformational changes during the anion-exchange cycle.

Keywords

Codon DMSO Proline Lysine Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aviv, H., and Leder, P., 1972, Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose, Proc. Natl. Acad. Sci. U.S.A. 69:1408–1412.PubMedCrossRefGoogle Scholar
  2. Bennett, V., 1982, The molecular basis for membrane-cytoskeletal association in human erythrocytes, J. Cell Biochem. 18:49–65.PubMedCrossRefGoogle Scholar
  3. Bennett, V., and Stenbuck, P. J., 1979, The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature 280:468–473.PubMedCrossRefGoogle Scholar
  4. Bennett, V., and Stenbuck, P. J., 1980, Association between ankyrin and the cytoplasmic domain of band 3 isolated from the human erythrocyte membrane, J. Biol. Chem. 255:6424–6432.PubMedGoogle Scholar
  5. Braell, W. A., 1981, Synthesis and Assembly of the Erythrocyte Anion Transport Protein, Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
  6. Braell, W. A., and Lodish, H. F., 1981, Biosynthesis of the erythrocyte anion transport protein, J. Biol. Chem. 256:11337–11344.PubMedGoogle Scholar
  7. Brock, C. J., Tanner, M. J. A., and Kempf, C., 1983, The human erythrocyte anion-transport protein. Partial amino acid sequence, conformation and a possible molecular mechanism for anion exchange, Biochem. J. 213:577–586.PubMedGoogle Scholar
  8. Cabantchik, Z. I., Knauf, P. A., and Rothstein, A., 1978, The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of “probes,” Biochem. Biophys. Acta 515:239–302.PubMedGoogle Scholar
  9. Chirgwin, J. M., Przybyla, A. E., McDonald, R. J., and Rutter, W. J., 1979, Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease, Biochemistry 18:5294–5299.PubMedCrossRefGoogle Scholar
  10. Dayhoff, M. O., Barker, W. C., and Hunt, T. L., 1983, Establishing homologies in protein sequences, Methods Enzymol. 91:524–545.PubMedCrossRefGoogle Scholar
  11. Drickamer, L. K., 1976, Fragmentation of the 95,00-dalton transmembrane polypeptide in human erythrocyte membranes, J. Biol. Chem. 251:5115–5123.PubMedGoogle Scholar
  12. Eisen, H., Bach, R., and Emery, R., 1977, Induction of spectrin in erythroleukemic cells transformed by Friend virus, Proc. Natl. Acad. U.S.A. 74:3898–3902.CrossRefGoogle Scholar
  13. Eisenberg, D., 1984, Three-dimensional structure of membrane and surface proteins, Annu. Rev. Biochem. 53:595–673.PubMedCrossRefGoogle Scholar
  14. England, B. J., Gunn, R. B., and Steck, T. L., 1980, An immunological study of band 3, the anion transport protein of the human red blood cell membrane, Biochim Biophys. Acta 623:171–182.PubMedGoogle Scholar
  15. Fairbanks, G., Steck, T. L., and Wallach, D. F. H., 1971, Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10:2606–2617.PubMedCrossRefGoogle Scholar
  16. Finer-Moore, J., and Stroud, R. M., 1984, Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A. 81:155–159.PubMedCrossRefGoogle Scholar
  17. Friend, C., Scher, W., Holland, J. G., and Sato, T., 1978, Hemoglobin synthesis in murine virus-induced leukemic cells in vitro.: Stimulation of erythroid differentiation by dimethyl sulfoxide, Proc. Natl. Acad. Sci. U.S.A. 68:378–382.Google Scholar
  18. Galvez, L. M., Jennings, M. L., and Tosteson, M. T., 1984, Incorporation of the DIDS-binding protein from the anion transport protein into bilayers. Fed. Proc. 43:315.Google Scholar
  19. Grinstein, S., Ship, S., and Rothstein, A., 1978, Anion transport in relation to proteolytic dissection of band 3 protein, Biochim. Biophys. Acta 507:294–304.PubMedCrossRefGoogle Scholar
  20. Henderson, R., and Unwin, P. N. T., 1975, Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32.PubMedCrossRefGoogle Scholar
  21. Jennings, M. L., 1984, Oligomeric structure and the anion transport function of human erythrocyte band 3 protein, J. Membr. Biol. 80:105–117.PubMedCrossRefGoogle Scholar
  22. Jennings, M. L., and Adams, M. F., 1981, Modification by papain of the structure and function of band 3, the erythrocyte anion transport protein. Biochemistry 20:7118–7123.PubMedCrossRefGoogle Scholar
  23. Jennings, M. L., and Nicknish, J. S., 1984, Erythrocyte band 3 protein: Evidence for multiple membrane-crossing segments in the 1700-dalton chymotrypsin fragments, Biochemistry 23:6432–6436.PubMedCrossRefGoogle Scholar
  24. Jennings, M. L., and Pasow, H., 1979, Anion transport across the erythrocyte membrane, in situ proteolysis of band 3 protein, and crosslinking of proteolytic fragments by 4,4′-diisothiocyano dihydrostilbene-2,2′-disulfonate, Biochim. Biophys. Acta 554:498–519.PubMedCrossRefGoogle Scholar
  25. Jennings, M. L., Lackey, M. A., and Denney, D. H., 1984, Peptides of human erythrocyte band 3 protein. Protein produced by extracellular papain cleavage, J. Biol. Chem. 259:4652–4660.PubMedGoogle Scholar
  26. Kaul, R. K., Murthy, P. S. N., Reddy, A. G., Steck, T. L., and Kohler, H., 1983, Amino acid sequence of the N alpha-terminal 201 residues of human erythrocyte membrane band 3, J. Biol. Chem. 258:7981–7990.PubMedGoogle Scholar
  27. Khoma, H. G., Gerber, G. G., Herlihy, W. C., Gray, C. P., Anderess, R. J., Nihei, K., and Biemarin, K., 1979, Amino acid sequence of bacteriorhodopsin, Proc. Natl. Acad. Sci. U.S.A. 77:5046–5050.Google Scholar
  28. Knauf, P. A., 1979, Erythrocyte anion exchange and the band 3 protein: Transport kinetics and molecular structure, Curr. Top. Membr. Transport 912:249.CrossRefGoogle Scholar
  29. Kopito, R. R., and Lodish, H. F., 1985, Primary structure and transmembrane orientation of the murine anion transport protein. Nature 316:234–238.PubMedCrossRefGoogle Scholar
  30. Kozak, M., 1981, Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes, Nucl. Acids Res. 9:5223–5262.CrossRefGoogle Scholar
  31. Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157:105–132.PubMedCrossRefGoogle Scholar
  32. Lemishka, I. R., Farmer, S., Rocaniello, V. R., and Sharp, P. A., 1981, Nucleotide sequence and evolution of a mammalian alpha-tubuUn messenger RNA, J. Mol. Biol. 151:101–120.CrossRefGoogle Scholar
  33. Low, P. S., Westfall, M. A., Allen, D. P., and Appell, K. C., 1984, Characterization of the reversible conformational equilibrium of the cytoplasmic domain of erythrocyte membrane band 3, J. Biol. Chem. 259:13070–13076.PubMedGoogle Scholar
  34. Macara, L G., and Cantley, L. C., 1982, The structure and function of band 3, in: Cell Membranes, Methods and Reviews (E. Elson, W. Frazier, and L. Glaser, eds.). Plenum Press, New York, pp. 41–87.Google Scholar
  35. Maniatis, T., Fritsch, E. F., and Sambrook, J., 1982, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York.Google Scholar
  36. Marks, P. A., and Rifkind, R. A., 1978, Erythroleukemic differentiation, Annu. Rev. Biochem. 47:419–448.PubMedCrossRefGoogle Scholar
  37. Mawby, W. J., and Findlay, J. B. C., 1983, Characterization and partial sequence of diiodosulphophenyl isothiocyanate-binding peptide from human erythrocyte anion-transport protein, Biochem. J. 205:465–475.Google Scholar
  38. Maxam, A., and Gilbert, W., 1980, Sequencing and end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.PubMedCrossRefGoogle Scholar
  39. Patel, V. P., and Lodish, H. F., 1984, Loss of adhesion of murine erythroleukemia cells to fibronectin during erythroid differentiation, Science 224:996–998.PubMedCrossRefGoogle Scholar
  40. Rao, A., 1979, Disposition of the band 3 polypeptide in the human erythrocyte membrane. The reactive sulfhydryl groups, J. Biol. Chem. 254:3503–3511.PubMedGoogle Scholar
  41. Sabban, E. L., Sabatini, D. D., Marchesi, J. T., and Adesnik, M., 1980, Biosynthesis of erythrocyte membrane protein band 3 in DMSO-induced Friend erythroleukemia cells, J. Cell Physiol. 104:261–268.PubMedCrossRefGoogle Scholar
  42. Sanger, F., Nicklen, S., and Coulson, A. R., 1977, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. 74:5463–5467.PubMedCrossRefGoogle Scholar
  43. Schiffer, M., and Edmundson, A. B., 1967, Use of helical wheels to represent the structures of proteins and to identify segments with helical potential, Biophys. J. 7:121–135.PubMedCrossRefGoogle Scholar
  44. Shaklai, N., Yguerabide, J., and Ranney, H. M., 1977, Classification and localization of hemoglobin binding sites on the red blood cell membrane, Biochemistry 16:5593–5597.PubMedCrossRefGoogle Scholar
  45. Staden, R., 1982, Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing, Nucl. Acids Res. 10:4731–4751.PubMedCrossRefGoogle Scholar
  46. Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane. A review, J. Cell Biol. 62:1–19.PubMedCrossRefGoogle Scholar
  47. Steck, T. L., Ramos, B., and Strapazon, E., 1976, Proteolytic dissection of band 3, the predominant transmembrane polypeptide of the human erythrocyte membrane. Biochemistry 15:1153–1161.PubMedCrossRefGoogle Scholar
  48. Strapazon, E., and Steck, T. L., 1976, Binding of rabbit muscle aldoslase to band 3, the predominant polypeptide of the human erythrocyte membrane. Biochemistry 15:1421–1424.PubMedCrossRefGoogle Scholar
  49. Walder, J. A., Chatteijee, R., Steck, T. L., Low, P. S., Musso, G. F., Kaiser, E. T., Rogers, P. H., and Arnone, A., 1984, The interaction of hemoglobin with the cytoplasmic domain of band 3 of the human erythrocyte membrane, J. Biol. Chem. 259:10238–10246.PubMedGoogle Scholar
  50. Wieth, J. O., and Brahm, J., 1985, Cellular anion transport, in: The Kidney: Physiology and Pathophysiology (G. Giebisch, and D. W. Seldin, eds.). Raven Press, New York, pp. 48–89.Google Scholar
  51. Wieth, J. O., Anderson, O. S., Brahm, J., Bjerrum, P. J., and Borders, C. L., 1982a, Chloride-bicarbonate exchange in red blood cells: Physiology of transport and chemical modification of binding sites, Phil. Trans. R. Soc. Lond. B299:383–399.Google Scholar
  52. Wieth, J. O., Bierrum, P. J., and Borders, C. L., Jr., 1982b, Irreversible inactivation of red cell chloride-exchange with phenylglycoxal, an arginine-specific reagent, J. Gen. Physiol. 79:283–312.PubMedCrossRefGoogle Scholar
  53. Young, R. A., and Davis, R. W., 1983, Efficient isolation of genes by using antibody probes, Proc. Natl. Acad. Sci. U.S.A. 80:1194–1198.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Ron R. Kopito
    • 1
  • Harvey F. Lodish
    • 2
    • 1
  1. 1.Whitehead Institute for Biomedical ResearchCambridgeUSA
  2. 2.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations