Transport of Protein Toxins Across Cell Membranes

  • Simon Van Heyningen
Part of the New Horizons in Therapeutics book series (NHTH)


The protein toxins produced by plants and bacteria are extraordinarily powerful: those of cholera, diphtheria, tetanus, and botulism are responsible for diseases that still kill many thousands of people every year, especially in the Third World. From the point of view of the biologist, their chief interest lies in their high activity: a single molecule of diphtheria toxin will kill a cell. Only hormones have comparable biological activity, and they are products of the organism that they affect; the toxins are produced by alien procaryotes, yet they can profoundly affect eucaryotic life. In this chapter, I give an outline of the properties of some of these proteins, emphasizing the way in which they manage to cross the membrane of the intoxicated cell to arrive at their intracellular target. It must be remembered that they face a double problem: they must first be secreted across the membrane of the cell in which they were synthesized before they can reach another cell. For two useful and recent general reviews, see Eidels et al. (1983) and Middlebrook and Dorner (1984).


Adenylate Cyclase Cholera Toxin Pertussis Toxin Diphtheria Toxin Tetanus Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boquet, P., and Duflot, E., 1982, Tetanus toxin fragment forms channels in lipid vesicles at low pH, Proc. Natl Acad. Sci. U.S.A. 79:7614–7618.PubMedCrossRefGoogle Scholar
  2. Boquet, P., and Pappenheimer, A. M., 1976, Interaction of diphtheria toxin with mammalian cell membranes, J. Biol. Chem. 251:5770–5778.PubMedGoogle Scholar
  3. Boquet, P., Duflot, E., and Hauttecoeur, B., 1984, Low pH induces a hydrophobic domain in the tetanus toxin molecule, Eur. J. Biochem. 144:339–344.PubMedCrossRefGoogle Scholar
  4. Collier, R. J., 1975, Diphtheria toxin: Mode of action and structure, Bacteriol. Rev. 39:54–85.PubMedGoogle Scholar
  5. Craig, S. W., and Cuatrecasas, P., 1975, Mobility of cholera toxin receptors on rat lymphocyte membranes, Proe. Natl. Aead. Sci. U.S.A. 72:3844–3848.CrossRefGoogle Scholar
  6. Critchley, D. R., Ansell, S., Perkins, R., Dilks, S., and Ingram, J., 1979, Isolation of cholera toxin receptors from a mouse fibroblast and lymphoid cell line by immune precipitation, J. Supramol. Struet. 12:273–291.CrossRefGoogle Scholar
  7. Dalziel, A. W., Lipka, G., Chowdry, B. Z., Sturtevant, J. M., and Schäfer, D. E., 1984, Effects of ganglioside GMl on the thermotropic behaviour of cholera toxin B subunit, Mol. Cell. Bioehem. 63:83–91.Google Scholar
  8. De Wolf, M. J. S., Fridkin, M., and Kohn, L. D., 1981, Tryptophan residues of cholera toxin and its A and B promoters, J. Biol. Chem. 256:5489–5496.PubMedGoogle Scholar
  9. Donovan, J. J., Simon, M. I., Draper, R. K., and Montal, M., 1981, Diphtheria toxin forms transmembrane channels in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 78:172–176.PubMedCrossRefGoogle Scholar
  10. Draper, R. K., and Simon, M. I., 1980, The entry of diphtheria toxin into the mammalian cell cytoplasm: Evidence for lysosomal involvement, J. Cell Biol. 87:849–854.PubMedCrossRefGoogle Scholar
  11. Draper, R. K., O’Keefe, D. O., Stookey, M., and Graves, J., 1984, Identification of a cold-sensitive step in the mechanism of modeccin action, J. Biol. Chem. 259:4083–4088.PubMedGoogle Scholar
  12. Dwyer, J. D., and Bloomfield, V. A., 1982, Subunit arrangement of cholera toxin in solution and bound to receptor-containing model membranes. Biochemistry 21:3227–3231.PubMedCrossRefGoogle Scholar
  13. Eidels, L., Proia, R. L., and Hart, D. A., 1983, Membrane receptors for bacterial toxins, Microbiol. Rev. 47:596–620.PubMedGoogle Scholar
  14. Falmagne, P., Capiau, C., Lambotte, P., Zanen, J., Cabiaux, V., and Ruysschaert, J.-M., 1985, The complete amino acid sequence of diphtheria toxin fragment B. Correlation with its lipid-binding properties, Biochim. Biophys. Acta 827:45–50.PubMedCrossRefGoogle Scholar
  15. Filipovich, A. H., Vallera, D. A., Youle, R. J., Quinones, R. R., Neville, D. M., Jr., and Kersey, J. H., 1984, Ex-vivo treatment of donor bone marrow with anti-T-cell immunotoxins for prevention of graft-versus-host disease, Lancet 1:469–472.PubMedCrossRefGoogle Scholar
  16. Fishman, P. H., 1980, Mechanism of action of cholera toxin: Studies on the lag period, J. Memb. Biol. 54:61–72.CrossRefGoogle Scholar
  17. Fishman, P. H., and Atikkan, E. E., 1979, Induction of cholera toxin receptors in cultured cells by butyric acid, J. Biol. Chem. 254:4342–4344.PubMedGoogle Scholar
  18. Fitzgerald, D., Morris, R. E., and Saelinger, C. B., 1989, Receptor-mediated internationalization of Pseudomonas toxin by mouse fibroblasts, Cell 21:867–873.CrossRefGoogle Scholar
  19. Gill, D. M., 1978, Seven toxic peptides that cross cell membranes, in: Bacterial Toxins and Cell Membranes (J. Jeljaszewicz and T. Wadstrom, eds.), Academic Press, New York, pp. 291–332.Google Scholar
  20. Habermann, E., 1981, Tetanus toxin and botulinum A neurotoxin inhibit and at higher concentrations enhance noradrenaline outflow from particulate brain cortex in batch, Naunyn Schmiedebergs Arch. Pharmacol. 318:105–111.PubMedGoogle Scholar
  21. Hagmann, J., and Fishman, P. H., 1981, Inhibitors of protein synthesis block action of cholera toxin, Biochem. Biophys. Res. Commun. 98:677–684.PubMedCrossRefGoogle Scholar
  22. Herschman, H. R., 1984, The role of binding ligand in toxic hybrid proteins: A comparison of EGF-ricin, EGF-ricin A-chain, and ricin, Biochem. Biophys. Res. Commun. 124:551–557.PubMedCrossRefGoogle Scholar
  23. Houslay, M. D., and Elliott, K. R. F., 1979, Cholera toxin mediated activation of adenylate cyclase in intact rat hepatocytes, FEBS Lett. 104:359–363.PubMedCrossRefGoogle Scholar
  24. Houston, L. L., 1982, Transport of ricin A chain after prior treatment of mouse leukemia cells with ricin B chain, J. Biol. Chem. 257:1532–1539.PubMedGoogle Scholar
  25. Hu, V. W., and Holmes, R. K., 1984, Evidence for direct insertion of fragments A and B of diphtheria toxin into model membranes, J. Biol. Chem. 259:12226–12233.PubMedGoogle Scholar
  26. Ishida, B., Cawley, D. B., Reue, K., and Wisnieski, B. J., 1983, Lipid-protein interactions during ricin toxin insertion into membranes, J. Biol. Chem. 258:5933–5937.PubMedGoogle Scholar
  27. Joseph, K. C., Kim, S. U., Steiber, A., and Gonatas, N. K., 1978, Endocytosis of cholera toxin into neuronal GERL, Proc. Natl. Acad. Sci. U.S.A. 75:2815–2819.PubMedCrossRefGoogle Scholar
  28. Kagan, B. L., Finkelstein, A., and Colombini, M., 1981, Diphtheria toxin fragment forms large pores in phosphoHpid bilayer membranes, Proc. Natl. Acad. Sci. U.S.A. 78:4950–4954.PubMedCrossRefGoogle Scholar
  29. Kaneda, Y., Uchida, T., Mekada, E., Nakanishi, M., and Okada, Y., 1984, Entry of diphtheria toxin into cells: Possible existence of cellular factor(s) for entry of diphtheria toxin into cells was studied in somatic cell hybrids and hybrid toxins, J. Cell. Biol. 98:466–472.PubMedCrossRefGoogle Scholar
  30. Kassis, S., Hagmann, J., Fishman, P. E., Chang, P. P., and Moss, J., 1982, Mechanism of action of cholera toxin on intact cells: Generation of Al peptide and activation of adenylate cyclase, J. Biol. Chem. 257:12148–12152.PubMedGoogle Scholar
  31. Kayser, G., Lambotte, P., Falmagne, P., Capiau, C., Zanen, J., and Ruysschaert, J.-M., 1981, A CNBr peptide located in the middle region of diphtheria toxin fragment B induces conductance change in lipid bilayers, Biochem. Biophys. Res. Commun. 99:358–363.PubMedCrossRefGoogle Scholar
  32. Kim, K., and Groman, N. B., 1956, Mode of inhibition of diphtheria toxin by ammonium chloride, J. Bacteriol. 90:1557–1562.Google Scholar
  33. Lai, C.-Y., 1980, The chemistry and biology of cholera toxin, CRC Crit. Rev. Biochem. 9:171–206.PubMedCrossRefGoogle Scholar
  34. Lai, C.-Y., Cancedda, F., and Duffy, L. K., 1981, ADP-ribosyl transferase activity of cholera toxin polypeptide Al and the effect of limited trypsinolysis, Biochem. Biophys. Res. Commun. 102:1021–1027.PubMedCrossRefGoogle Scholar
  35. Leppla, S. H., 1982, Anthrax toxin edema factor: A bacterial adenylate cyclase that increases cyclic AMP concentrations in eukaryotic cells, Proc. Natl. Acad. Sci. U.S.A. 79:3162–3166.PubMedCrossRefGoogle Scholar
  36. Mannhalter, J. W., Gilliland, D. G., and Collier, R. J., 1980, A hybrid toxin containing fragment A from diphtheria toxin linked to the B protomer of cholera toxin, Biochim. Biophys. Acta 626:443–450.PubMedGoogle Scholar
  37. Marnell, M. H., Shia, S.-P., Stookey, M., and Draper, R. D., 1984, Evidence for penetration of diphtheria toxin to the cytosol through a prelysosomal membrane, Infect. Immun. 44:145–150.PubMedGoogle Scholar
  38. Matuo, Y., Wheeler, M. A., and Bitensky, M. W., 1976, Small fragments from the A subunit of cholera toxin capable of activating adenylate cyclase, Proc. Natl. Acad. Sci. U.S.A. 73:2654–2658.PubMedCrossRefGoogle Scholar
  39. Mellanby, J., and Green, J., 1981, How does tetanus toxin act? Neuroscience 6:281–300.PubMedCrossRefGoogle Scholar
  40. Merion, M., Schlesinger, P., Brooks, R. M., Moehring, J. M., Moehring, T. J., and Sly, W. S., 1983, Defective acidification of endosomes in Chinese hamster ovary cell mutants “cross-resistant” to toxins and viruses, Proc. Natl. Acad. Sci. U.S.A. 80:5315–5319.PubMedCrossRefGoogle Scholar
  41. Middlebrook, J. L., and Dorland, R. B., 1984, Bacterial toxins: Cellular mechanisms of action, Microbiol. Rev. 48:199–221.PubMedGoogle Scholar
  42. Moss, J., Fishman, P. H., Manganiello, V. A., Vaughan, M., and Brady, R. O., 1976, Functional incorporation of ganglioside into intact cells: Induction of choleragen responsiveness, Proc. Natl. Acad. Sci. U.S.A. 73:1034–1037.PubMedCrossRefGoogle Scholar
  43. Moss, J., Richards, R. L., Alving, C. R., and Fishman, P. H., 1977, Effect of the A and B protomers of choleragen on release of trapped glucose from liposomes containing or lacking ganglioside GM1, J. Biol. Chem. 252:797–798.PubMedGoogle Scholar
  44. Moss, J., Stanley, S. J., Morin, J. E., and Dixon, J. E., 1980, Activation of choleragen by thiol:protein disulfide oxidoreductase, J. Biol. Chem. 255:11085–11087.PubMedGoogle Scholar
  45. Mullin, B. R., Fishman, P. H., Lee, G., Aloj, S. M., Ledley, F. D., Winand, R. J., Kohn, L. D., and Brady, R. O., 1976, Thyrotropin-gangHoside interactions and their relationship to the structure and function of thyrotropin receptors, Proc. Natl. Acad. Sci. U.S.A. 73:842–846.PubMedCrossRefGoogle Scholar
  46. O’Brien, A. D., LaVeck, G. D., Griffin, D. E., and Thompson, M. R., 1980, Characterization of Shigella dysenteriae 1 (Shiga) toxin purified by anti-Shiga toxin affinity chromatography, Infect. Immun. 30:170–179.PubMedGoogle Scholar
  47. Olsnes, S., and Pihl, A., 1982, Toxic lectins and related proteins, in The Molecular Action of Toxins and Viruses (P. Cohen and S. van Heyningen, eds.), Elsevier, Amsterdam, pp. 51–105.Google Scholar
  48. Olsnes, S., Reisbig, R., and Eiklid, K., 1981, Subunit structure of Shigella cytotoxin, J.Biol. Chem. 256:8732–8738.PubMedGoogle Scholar
  49. Olsnes, S., Sandvig, K., Madshus, I. H., and Sundan, A., 1985, Entry mechanisms of protein toxins and picrornaviruses, Biochem. Soc. Symp. 50:171–191.PubMedGoogle Scholar
  50. Proia, R. L., Eidels, L., and Hart, D. A., 1981, Diphtheria toxin: Receptor interaction, J. Biol. Chem. 256:4991–4997.PubMedGoogle Scholar
  51. Revesz, T., and Greaves, M., 1975, Ligand-induced redistribution of lymphocyte membrane ganglioside GMl, Nature 257:103–106.PubMedCrossRefGoogle Scholar
  52. Rodgers, T. B., and Snyder, S. H., 1981, High affinity binding of tetanus toxin to mammalian brain membranes, J. Biol. Chem. 256:2402–2407.Google Scholar
  53. Sandvig, K., and Olsnes, S., 1981, Rapid entry of nicked diphtheria toxin into cells at low pH. Characterization of the entry process and effect of low pH on the toxin molecule, J. Biol. Chem. 256:9068–9076.PubMedGoogle Scholar
  54. Sandvig, K., Olsnes, S., and Pihl, A., 1979, Inhibitory effect of ammonium chloride and chloroquine on the entry of the toxic lectin modeccin into HeLa cells, Biochem. Biophys. Res. Commun. 90:648–655.PubMedCrossRefGoogle Scholar
  55. Sandvig, K., Sundan, A., and Olsnes, S., 1984, Evidence that diphtheria toxin and modeccin enter the cytosol from different vesicular compartments, J. Cell Biol. 98:963–970.PubMedCrossRefGoogle Scholar
  56. Sillerud, L. O., Prestegard, J. H., Yu, R. K., Königsberg, W. H., and Schäfer, D. E., 1981, Observation by 13C NMR of interactions between cholera toxin and the oligosaccharide of ganglioside GMl, J. Biol. Chem. 256:1094–1097.PubMedGoogle Scholar
  57. Simpson, L. L., 1984a, Botulinum toxin and tetanus toxin recognize similar membrane determinants. Brain Res. 305:177–180.PubMedCrossRefGoogle Scholar
  58. Simpson, L. L., 1984b, The binding fragment from tetanus toxin antagonizes the neuromuscular blocking actions of botulinum toxin, J. Pharmacol. Exp. Ther. 229:182–187.PubMedGoogle Scholar
  59. Stirpe, F., Sandvig, K., Olsnes, S., and Pihl, A., 1982, Action of viscumin, a toxic lectin from mistletoe, on cells in culture, J. Biol. Chem. 257:13271–13277.PubMedGoogle Scholar
  60. Sugiyama, H., 1980, Clostridium botulinum neurotoxin, Microbiol. Rev. 44:419–448.Google Scholar
  61. Tamura, M., Nogimori, K., Murai, S., Yajima, M., Ito, K., Katada, T., Ui, M., and Ishii, S., 1982, Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry 21:5516–5522.PubMedCrossRefGoogle Scholar
  62. Thorpe, P. E., and Ross, W. C. J., 1982, The preparation and cytotoxic properties of antibody-toxin conjugates, Immunol. Rev. 62:119–158.PubMedCrossRefGoogle Scholar
  63. Tosteson, M. T., Tosteson, D. C., and Rubnitz, J., 1980, Cholera toxin interactions with lipid bilayers. Acta Physiol. Scand. [Suppl.] 481:21–25.Google Scholar
  64. Tsuru, S., Matsuguchi, M., Watanabe, M., Taniguchi, M., and Zinnaka, Y., 1984, Entrance of cholera enterotoxin subunits into thymus cells, J. Histochem. Cytochem. 32:1257–1279.Google Scholar
  65. Uchida, T., 1982, Diphtheria toxin, in: Molecular Action of Toxins and Viruses (P. Cohen and S. van Heyningen, eds.), Elsevier, Amsterdam, pp. 1–31.Google Scholar
  66. van Heyningen, S., 1977, Activity of covalently cross-Hnked cholera toxin with the adenylate cyclase of intact and lysed pigeon erythrocytes, Biochem. J. 168:457–463.PubMedGoogle Scholar
  67. van Heyningen, S., 1980, Tetanus toxin, Pharmacol. Ther. 11:141–157.Google Scholar
  68. van Heyningen, S., 1982a, Similarities in the action of different toxins, in: Molecular Action of Toxins and Viruses (P. Cohen and S. van Heyningen, eds.), Elsevier, Amsterdam, pp. 169–190.Google Scholar
  69. van Heyningen, S., 1982b, Cholera toxin, Biosci. Rep. 2:135–146.Google Scholar
  70. van Heyningen, S., 1982c, Conformational changes in subunit A of cholera toxin following the binding of ganglioside to subunit B, Eur. J. Biochem. 122:333–337.PubMedCrossRefGoogle Scholar
  71. van Heyningen, S., 1938a, The interaction of cholera toxin with gangliosides and the cell membrane. Current Top. Membr. Transport. 18:445–470.CrossRefGoogle Scholar
  72. van Heyningen, S., 1983b, A conjugate of the Al peptide of cholera toxin and the lectin of Wisteria floribunda that activates the adenylate cyclase of intact cells, FEBS Lett. 164:132–134.PubMedCrossRefGoogle Scholar
  73. van Heyningen, S., 1984, Cholera and related toxins, in: Molecular Medicine, Vol. I (A. D. B. Malcolm, ed.), IRL Press, Oxford, pp. 1–15.Google Scholar
  74. van Heyningen, S., and King, C. A., 1975, Subunit A from cholera toxin is an activator of adenylate cyclase in pigeon erythrocytes, Biochem. J. 146:269–271.PubMedGoogle Scholar
  75. van Heyningen, S., and Tait, R. M., 1980, Cholera toxin: Structure and function, in: Hormones and Cell Regulation, Vol. 4 (J. Dumont and J. Nunez, eds.), Elsevier, Amsterdam, pp. 293–309.Google Scholar
  76. van Heyningen, W. E., 1974, Gangliosides as membrane receptors for tetanus toxin, cholera toxin, and serotonin. Nature 249:415–417.CrossRefGoogle Scholar
  77. Vasil, M. L., Kabat, D., and Iglewski, B. H., 1977, Structure-activity relationships of an exotoxin of Pseudomonas aeruginosa, Infect. Immun. 16:353–361.Google Scholar
  78. Ward, W. H. J., Britton, P., and van Heyningen, S., 1981, The hydrophobicities of cholera toxin, tetanus toxin and their components, Biochem. J. 199:457–460.PubMedGoogle Scholar
  79. Wardlaw, A. C., and Parton, R., 1983, Bordetella pertussis toxins, Pharmacol. Ther. 19:1–53.Google Scholar
  80. Willingham, M. C., and Pastan, I., 1984, Endocytosis and exocytosis: Current concepts of vesicle traffic in animal cells, Int. Rev. Cytol. 92:51–92.PubMedCrossRefGoogle Scholar
  81. Wisnieski, B. J., and Bramhall, J. S., 1981, Photolabelling of cholera toxin subunits during membrane penetration, Nature 289:319–321.PubMedCrossRefGoogle Scholar
  82. Yavin, E., and Habig, W. H., 1984, Binding of tetanus toxin to somatic neural hybrid cells with varying ganglioside composition, J. Neurochem. 42:1313–1320.PubMedCrossRefGoogle Scholar
  83. Yavin, Z., Yavin, E., and Kohn, L. D., 1982, Sequestration of tetanus toxin in developing neuronal cell cultures, J. Neurosci. Res. 7:267–278.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Simon Van Heyningen
    • 1
  1. 1.Department of BiochemistryUniversity of EdinburghEdinburghScotland

Personalised recommendations