Mechanisms of Molecular Sorting in Endosomes

  • Ira Mellman
Part of the New Horizons in Therapeutics book series (NHTH)


Since the time of Metchnikoff over a century ago, it has been clear that eucaryotic cells interact with their environment by eating some of it via endocytosis. As long as 50 years ago, it was suspected that endocytosis brought about the internalization of enormous amounts of extracellular material and, consequently, of a cell’s plasma membrane (Lewis, 1931). Only recently, however, has it been documented that endocytosis is also characterized by a high degree of specificity, both in the initial recognition events leading to the selective uptake of certain extracellular macromolecules and in the subsequent intracellular events that control the fate of internalized membrane, fluid, and solutes.


Lysosomal Enzyme Lysosomal Membrane Coated Vesicle Endocytic Vesicle Endosomal Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R. G. W., Brown, M. S., Beisiegel, U., and Goldstein, J. L., 1982, Surface distribution and recycling of the low density lipoprotein receptor as visualized with anti-receptor antibodies, J. Cell Biol. 93:523–531.PubMedCrossRefGoogle Scholar
  2. Ascoli, M., 1984, Lysosomal accumulation of the hormone-receptor complex during receptor-mediated endocytosis of human choriogonadotropin, J. Cell Biol. 99:1242–1250.PubMedCrossRefGoogle Scholar
  3. Beguinot, L., Lyall, R. M., Willingham, M. C., and Pastan, I., 1984, Down regulation of the epidermal growth factor receptor in KB cells is due to receptor internalization and subsequent degradation in lysosomes, Proc. Natl. Acad. Sci. U.S.A. 81:2384–2388.PubMedCrossRefGoogle Scholar
  4. Besterman, J. M., Airhart, J. A., Woodworth, R. C., and Low, R. B., 1981, Exocytosis of pinocytosed fluid in cultured cells: Kinetic evidence for rapid turnover and compartmentation, J. Cell Biol. 91:716–727.PubMedCrossRefGoogle Scholar
  5. Braell, W. A., Schlossman, D. M., Schmid, S. L., and Rothman, J. E., 1984, Dissociation of clathrin coats coupled to the hydrolysis of ATP: Role of an uncoating ATPase, J. Cell Biol. 99:734–741.PubMedCrossRefGoogle Scholar
  6. Brown, W. J., and Farquhar, M. G., 1984, The mannose 6-phosphate receptor for lysosomal enzymes is concentrated in eis Golgi cisternae, Cell 36:295–307.PubMedCrossRefGoogle Scholar
  7. Brown, M. S., Anderson, R. G. W., and Goldstein, J. L., 1983, Recycling receptors: The round trip itinerary of migrant membrane proteins. Cell 32:663–667.PubMedCrossRefGoogle Scholar
  8. Dunn, W. A., Hubbard, A. L., and Aronson, N. N., Jr., 1980, Low temperature selectively inhibits fusion between pinocytic vesicles and lysosomes during heterophagy of asialofetuin by the perfused liver, J. Biol. Chem. 255:5971–5978.PubMedGoogle Scholar
  9. Forgac, M., Cantley, L., Wiedenmann, B., Altstiel, L., and Branton, D., 1983, Clathrin-coated vesicles contain an ATP-dependent proton pump, Proc. Natl. Acad. Sci. U.S.A. 80:1300–1303.PubMedCrossRefGoogle Scholar
  10. Galloway, C. J., Dean, G. E., Marsh, M., Rudnick, G., and Mellman, L, 1983, Acidification of macrophage and fibroblast endocytic vesicles in vitro, Proc. Natl. Acad. Sci. U.S.A. 80:3334–3338.CrossRefGoogle Scholar
  11. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Lodish, H. F., and Schwartz, A. L., 1983, Intracellular site of asialoglycoprotein uncoupling: Double label immunoelectron microscopy during receptor-mediated endocytosis. Cell 32:277–287.PubMedCrossRefGoogle Scholar
  12. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Peppard, J., von Figura, K., Hasilik, A., and Schwartz, A. L., 1984, Intracellular receptor sorting during endocytosis: Comparative immunoelectron microscopy of multiple receptors in rat liver. Cell 37:195–204.PubMedCrossRefGoogle Scholar
  13. Glickman, J., Croen, K., Kelly, S., and Al-Awqati, Q., 1983, Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance, J. Cell Biol. 97:1303–1308.PubMedCrossRefGoogle Scholar
  14. Green, S. A., Plutner, H., and Mellman, I., 1985, Biosynthesis and intracellular transport of the mouse macrophage Fc receptor, J. Biol. Chem. 260:9867–9874.PubMedGoogle Scholar
  15. Harford, J., Bridges, K., Ashwell, G., and Klausner, R. D., 1983, Intracellular dissociation of receptor-bound asialoglycoproteins in cultured hepatocytes: A pH-mediated non-lysosomal event, J. Biol. Chem. 258:3191–3197.PubMedGoogle Scholar
  16. Harms, E., Kern, H., and Schneider, J. A., 1980, Human lysosomes can be purified from diploid skin fibroblasts by free-flow electrophoresis, Proc. Natl. Acad. Sci. U.S.A. 77:6139–6143.PubMedCrossRefGoogle Scholar
  17. Helenius, A., Mellman, I., Wall, D., and Hubbard, A., 1983, Endosomes, Trends Biochem. Sci. 8:245–250.CrossRefGoogle Scholar
  18. Hirsch, J. G., Fedorko, M. E., and Cohn, Z. A., 1968, Vesicle fusion and formation at the surface of pinocytic vesicles in macrophages, J. Cell Biol. 38:619–632.Google Scholar
  19. Hopkins, C. R., 1983, The importance of the endosome in intracellular traffic, Nature 304:684–685.PubMedCrossRefGoogle Scholar
  20. Hopkins, C. R., and Trowbridge, I. S., 1983, Internalization and processing of transferrin and the transferrin receptor in human carcinoma A431 cells, J. Cell Biol. 97:508–521.PubMedCrossRefGoogle Scholar
  21. Kasuga, M., Kahn, R., Hedo, J. A., Obberghen, E. V., and Yamada, K. M., 1981, Insulin-induced receptor loss in cultured human lymphocytes is due to accelerated receptor degradation, Proc. Natl. Acad. Sci. U.S.A. 78:6917–6921.PubMedCrossRefGoogle Scholar
  22. Lewis, V., Green, S. A., Marsh, M., Virkko, P., Helenius, A., and Mellman, I., 1985, Glycoproteins of the lysosomal membrane, J. Cell Biol. 100:1839–1847.PubMedCrossRefGoogle Scholar
  23. Lewis, W. H., 1931, Pinocytosis, Bull. Johns Hopkins Hosp. 49:17–36.Google Scholar
  24. Marsh, M., Bolzau, E., and Helenius, A., 1983, Penetration of Semliki Forest virus from acidic prelysosomal vesicles. Cell 32:931–940.PubMedCrossRefGoogle Scholar
  25. Marsh, M., Dean, G., Griffiths, G., Mellman, I., and Helenius, A., 1986, Three-dimensional structure of endosomes in BHK-21 cells, Proc. Natl. Acad. Sci. U.S.A., in press.Google Scholar
  26. Mellman, I., 1982, Endocytosis, membrane recycling, and Fc receptor function, in: Membrane Recycling, Ciba Foundation Symposium No. 92 (D. Evered, ed.), Pitman, London, pp. 35–58.Google Scholar
  27. Mellman, I., and Galloway, C. J., 1983, Selective labeling and quantitative analysis of internalized plasma membrane. Methods Enzymol. 98:545–555.PubMedCrossRefGoogle Scholar
  28. Mellman, I., and Plutner, H., 1984, Internalization and degradation of macrophage Fc receptors bound to polyvalent immune complexes, J. Cell Biol. 98:1170–1177.PubMedCrossRefGoogle Scholar
  29. Mellman, I., and Ukkonen, P., 1985, Internalization and fate of macrophage Fc receptors during receptor-mediated endocytosis, in:4th Leiden Conference on the Heterogeneity of Mononuclear Phagocytes (R. van Furth, ed.), A. Nijhoff, Amsterdam, pp. 75–83.Google Scholar
  30. Mellman, I. S., and Unkeless, J. C., 1980, Purification of a functional mouse Fc receptor through the use of a monoclonal antibody, J. Exp. Med. 152:1048–1069.PubMedCrossRefGoogle Scholar
  31. Mellman, I. S., Steinman, R. M., Unkeless, J. C., and Cohn, Z. A., 1980, Selective iodination and polypeptide composition of pinocytic vesicles, J. Cell Biol. 86:712–722.PubMedCrossRefGoogle Scholar
  32. Mellman, I. S., Plutner, H., Steinman, R. M., Unkeless, J. C., and Cohn, Z. A., 1983, Internalization and degradation of macrophage Fc receptors during receptor-mediate phagocytosis, J. Cell Biol. 96:887–895.PubMedCrossRefGoogle Scholar
  33. Mellman, I., Plutner, H., and Ukkonen, P., 1984, Internalization and rapid recycling of macrophage Fc receptors tagged with monovalent antireceptor antibody: Possible role of a prelysosomal compartment, J. Cell Biol. 98:1163–1169.PubMedCrossRefGoogle Scholar
  34. Merion, M., and Sly, W. S., 1983, The role of intermediate vesicles in the adsorptive endocytosis and transport of ligand to lysosomes by human fibroblasts, J. Cell Biol. 96:644–650.PubMedCrossRefGoogle Scholar
  35. Muller, W. A., Steinman, R. M., and Cohn, Z. A., 1983, The membrane proteins of the vacuolar system. III. Further studies on the composition and recycling of endocytic vacuole membrane in culture macrophages, J. Cell Biol. 96:29–36.PubMedCrossRefGoogle Scholar
  36. Muller, W. A., Steinman, R. M., and Cohn, Z. A., 1980, The membrane proteins of the vacuolar system. II. Bidirectional flow between secondary lysosomes and plasma membrane, J. Cell Biol. 86:304–314.PubMedCrossRefGoogle Scholar
  37. Neutra, M. R., Ciechanover, A., Owen, L. S., and Lodish, H. F., 1985, Intracellular transport of transferrin- and asialoorosomucoid-colloidal gold to lysomes after receptor-mediated endocytosis, J. Histochem. Cytochem., 33:1134–1144.PubMedCrossRefGoogle Scholar
  38. Ohkuma, S., and Poole, B., 1978, Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents, Proc. Natl. Acad. Sci. U.S.A. 75:3327–3331.PubMedCrossRefGoogle Scholar
  39. Ohkuma, S., Moriyami, Y., and Takano, T., 1982, Identification and characterization of aproton pump in lysosomes by fluorescein isothiocyanate-dextran fluorescence, Proc. Natl. Acad. Sci. U.S.A. 79:2758–2762.PubMedCrossRefGoogle Scholar
  40. Pastan, I. H., and Willingham, M. C., 1981, Journey to the center of the cell: Role of the receptosome, Science 214:504–509.PubMedCrossRefGoogle Scholar
  41. Robbins, A. R., Peng, S.S., and Marshall, J. L., 1983, Mutant Chinese hamster ovary cells pleiotropically defective in receptor-mediated endocytosis, J. Cell Biol. 96:1064–1071.PubMedCrossRefGoogle Scholar
  42. Robbins, A. R., Oliver, C., Bateman, J. L., Krag, S. S., Galloway, C. J., and Mellman, I., 1984, A single mutation in Chinese hamster ovary cells impairs both Golgi and endosomal functions, J. Cell Biol. 99:1296–1308.PubMedCrossRefGoogle Scholar
  43. Rudnick, G., 1985, Acidification of intracellular organelles: mechanism and function, in: Physiology of Membrane Disorders (T. E. Andreoli, D. D. Fanestil, J. F. Hoffman, and S. G. Schultz, eds.). Plenum Press, New York (in press).Google Scholar
  44. Schreiber, A. B., Liberman, T. A., Laz, I., Yarden, Y., and Schlessinger, J., 1983, Biological role of epidermal growth factor receptor clustering. Investigation with monoclonal anti-receptor antibodies, J. Biol. Chem. 258:846–853.PubMedGoogle Scholar
  45. Steinman, R. M., Brodie, S. E., and Cohn, Z. A., 1976, Membrane flow during pinocytosis. A stereologic analysis, J. Cell Biol. 68:665–687.PubMedCrossRefGoogle Scholar
  46. Steinman, R. M., Mellman, I. S., Muller, W. A., and Cohn, Z. A., 1983, Endocytosis and the recychng of plasma membrane, J. Cell Biol. 96:1–27.PubMedCrossRefGoogle Scholar
  47. Stone, D. K., Zie, X.-S., and Racker, E., 1983, An ATP-driven proton pump in clathrin coated vesicles, J. Biol. Chem. 258:4059–4062.PubMedGoogle Scholar
  48. Stoscheck, C. M., and Carpenter, G., 1984, Down regulation of epidermal growth factor receptors: Direct demonstration of receptor degradation in human fibroblasts, J. Cell Biol. 98:1048–1053.PubMedCrossRefGoogle Scholar
  49. Swanson, J. A., Yirinec, B. D., and Silverstein, S. C., 1985, Phorbol esters and horseradish peroxidase stimulate pinocytosis and redirect flow of pinocytosed fluid in macrophages, J. Cell Biol. 100:851–859.PubMedCrossRefGoogle Scholar
  50. Tycko, B., and Maxfield, F. M., 1982, Rapid acidification of endocytic vesicles containing alpha-2-macroglobulin. Cell 28:643–651.PubMedCrossRefGoogle Scholar
  51. Uchida, E., Ohsumi, Y., and Anraku, Y., 1985, Purification and properties of H+-translocating, Mg2+-adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae, J. Biol. Chem. 260:1090–1095.Google Scholar
  52. Ukkonen, P., Lewis, V., Marsh, M., Helenius, A., and Mellman, I., 1985, Transport of macrophage Fc receptors and Fc-receptor-bound ligands to lysosomes, submitted.Google Scholar
  53. Unkeless, J. C., Fleit, H. B., and Mellman, I., 1981, Structural aspects and heterogeneity of immunoglobulin Fc receptors. Adv. Immunol. 31:247–270.PubMedCrossRefGoogle Scholar
  54. van Renswoude, J., Bridges, K. R., Harford, J. B., and Klausner, R. D., 1982, Receptor-mediated endocytosis of transferrin and the uptake of Fe in K562 cells: Identification of a nonlysosomal acidic compartment, Proc. Natl. Acad. Sci. U.S.A. 79:6186–6190.PubMedCrossRefGoogle Scholar
  55. von Figura, K., Gieselmann, V., and Hasilik, A., 1984, Antibody to mannose 6-phosphate specific receptor induces receptor deficiency in human fibroblasts, EMBO J. 3:1281–1282.Google Scholar
  56. Willingham, M. C., Hanover, J. A., Dickson, R. B., and Pastan, I., 1984, Morphologic characterization of the pathway of transferrin endocytosis and recycling in human KB cells, Proc. Natl. Acad. Sci. U.S.A. 81:175–179.PubMedCrossRefGoogle Scholar
  57. Yamashiro, D. J., Tycko, B., Fluss, S. R., and Maxfield, F. R., 1984, Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell 37:789–800.PubMedCrossRefGoogle Scholar
  58. Young, J. D.-E., Unkeless, J. C., Young, T. M., Mauro, A., and Cohn, Z. A., 1983, Role for mouse macrophage IgG/Fc receptor as ligand-dependent ion channel, Nature 306:186–189.PubMedCrossRefGoogle Scholar
  59. Zhang, F., and Schneider, D. L., 1983, The bioenergetics of Golgi apparatus function: Evidence for an ATP-dependent proton pump, Biophys. Biochem. Res. Commun. 114:620–625.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Ira Mellman
    • 1
  1. 1.Department of Cell BiologyYale University School of MedicineNew HavenUSA

Personalised recommendations