Skip to main content

Studies of a Biological Energy Transducer

The lac Permease of Escherichia coli

  • Chapter
Book cover New Insights into Cell and Membrane Transport Processes

Part of the book series: New Horizons in Therapeutics ((NHTH))

  • 57 Accesses

Abstract

In much the same way that the double helix model of DNA has provided the backbone for molecular genetics, the chemiosmotic hypothesis formulated and refined by Peter Mitchell during the 1960s (Mitchell, 1961, 1963, 1966) is now the conceptual framework for a wide variety of bioenergetic phenomena. In its most general form (Fig. 1), the chemiosmotic concept postulates that the immediate driving force for many processes in energy-coupling membranes is a H+ electrochemical gradient (\(Delta \overline \mu _{H^ + }\) ) composed of electrical and chemical parameters according to the following relationship: \( Delta \overline \mu _{H^ + } /F = \Delta \psi - 2.3RT/F \Delta pH \) where Δψ represents the electrical potential across the membrane and the ΔpH is the chemical difference in H+ concentration across the membrane (R is the gas constant, T is absolute temperature, F is the Faraday constant; 2.3RT/F is equal to 58.8 at room temperature) (Mitchell, 1961).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beyreuther, K., Beiseler, B., Ehring, R., and Müller-Hill, B., 1981, Identification of internal residues of lactose permease of Escherichia coli by radiolabel of peptide mixtures, in: Methods in Protein Sequence Analysis (M. Elzina, ed.), Humana Press, Clifton, NJ, p. 139.

    Google Scholar 

  • Carrasco, N., Herzlinger, D., DeChiara, S., Danho, W., Gabriel, T. F., and Kaback, H. R., 1983, Topology of the lac protein in the membrane of Escherichia coli, Biophys. J. 45:83a.

    Google Scholar 

  • Carrasco, N., Herzlinger, D., Mitchell, R., DeChiara, S., Danho, W., Gabriel, T. F., and Kaback, H. R., 1984a, Intramolecular dislocation of the COOH-terminus of the lac carrier protein in reconstituted proteoliposomes, Proc. Natl. Acad. Sci. U.S.A. 81:4672–4676.

    Article  PubMed  CAS  Google Scholar 

  • Carrasco, N., Viitanen, P., Herzlinger, D., and Kaback, H. R., 1984b, Monoclonal antibodies against the lac carrier protein from Escherichia coli, I. Functional studies, Biochemistry 23:3681–3687.

    Article  PubMed  CAS  Google Scholar 

  • Costello, M. J., Viitanen, P., Carrasco, N., Foster, D. L., and Kaback, H. R., 1984, Morphology of proteoliposomes reconstituted with purified lac carrier protein from Escherichia coli, J. Biol. Chem. 259:15579–15586.

    CAS  Google Scholar 

  • Foster, D. L., Boublik, M., and Kaback, H. R., 1983, Structure of the lac carrier protein of Escherichia coli, J. Biol. Chem. 258:31.

    CAS  Google Scholar 

  • Fox, C. F., and Kennedy, E. P., 1965, Specific labeling and partial purification of the M protein, a component of the ß-galactoside transport system of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 54:891–899.

    Article  CAS  Google Scholar 

  • Garcia, M. L., Viitanen, P., Foster, D. L., and Kaback, H. R., 1983, Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. I. Effect of pH and imposed membrane potential on efflux, exchange and counterflow, Biochemistry 22:2524–2531.

    Article  PubMed  CAS  Google Scholar 

  • Goldkorn, T., Rimon, G., and Kaback, H. R., 1983, Topology of the lac carrier protein in the membrane of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 80:3322–3326.

    Article  CAS  Google Scholar 

  • Herzlinger, D., Viitanen, P., Carrasco, N., and Kaback, H. R., 1984, Monoclonal antibodies against the lac carrier protein from Escherichia coli. II. Binding studies with membrane vesicles and proteoliposomes reconstituted with purified lac carrier protein, Biochemistry 23:3688–3693.

    Article  PubMed  CAS  Google Scholar 

  • Herzlinger, D., Carrasco, N., and Kaback, H. R., 1985, Functional and immunochemical characterization of a mutant of Escherichia coli energy uncoupled for lactose transport. Biochemistry 24:221–229.

    Article  PubMed  CAS  Google Scholar 

  • Hong, J.-S., 1977, An ecf mutation in Escherichia coli pleiotropically affecting energy coupling in active transport but not generation or maintenance of membrane potential, J. Biol. Chem. 252:8582–8588.

    PubMed  CAS  Google Scholar 

  • Kaback, H. R., 1976, Molecular biology and energetics of membrane transport, J. Cell. Physiol. 89:575–594.

    Article  PubMed  CAS  Google Scholar 

  • Kaback, H. R., 1983, Thelac carrier protein in Escherichia coli: From membrane to molecule, J. Membr. Biol. 76:95.

    Article  PubMed  CAS  Google Scholar 

  • Kaback, H. R., 1986, Active transport in Escherichia coli: From membrane to molecule, in: Physiology of Membrane Disorders (T. E. Andreoli, J. F. Hoffman, D. D. Fanestil, and S. G. Schultz, eds.). Plenum Press, New York, pp. 387–407.

    Chapter  Google Scholar 

  • Matsushita, K., Patel, L., Gennis, R. B., and Kaback, H. R., 1983, Reconstitution of active transport in proteoliposomes containing cytochome o oxidase and lac carrier protein purified from Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 80:4889–4893.

    Article  CAS  Google Scholar 

  • Matsushita, K., Patel, L., and Kaback, H. R., 1984, Cytochromeo oxidase from Escherichia coli. Characterization of the enzyme and mechanism of electrochemical proton gradient generation, Biochemistry 23:4703–4714.

    Article  PubMed  CAS  Google Scholar 

  • Mieschendahl, M., Büchel, D., Bocklage, H., and Müller-Hill, B., 1981, Mutations in the lac y gene of Escherichia coli define functional organization of lactose permease, Proc. Natl. Acad. Sci. U.S.A. 78:7652–7656.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, P., 1961, Coupling of phosphorylation to electron hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148’169.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, P., 1963, Molecule, group, and electron translocation through natural membranes, Biochem. Soc. Symp. 22:142–148.

    Google Scholar 

  • Mitchell, P., 1966, Chemiosmotic Coupling and Energy Transduction, Glynn Research Ltd., Bodmin, UK.

    Google Scholar 

  • Overath, P., and Wright, J. K., 1983, Lactose permease: A carrier on the move, Trends Biochem. Sci. 8:404–408.

    Article  CAS  Google Scholar 

  • Plate, C. A., and Suit, J. L., 1981, Theeup genetic locus of Escherichia coli and its role in H+/solute symport, J. Biol. Chem. 256:12974–12980.

    PubMed  CAS  Google Scholar 

  • Seckler, R., and Wright, J. K., 1984, Sidedness of native membrane vesicles of Escherichia coli and orientation of the reconstituted lactose:H+ carrier, Eur. J. Biochem. 142:269–279.

    Article  PubMed  CAS  Google Scholar 

  • Seckler, R., Wright, J. K., and Overath, P., 1983, Peptide-specific antibody locates the COOH terminus of the lactose carrier of Escherichia coli on the cytoplasmic side of the plasma membrane, J. Biol. Chem. 258:10817–10820.

    PubMed  CAS  Google Scholar 

  • Trumble, W. R., Viitanen, P. V., Sarkar, H. K., Poonian, M. S., and Kaback, H. R., 1984, Site-directed mutagenesis of Cys 148 in the lac carrier protein of Escherichia coli, Biochem. Biophys. Res. Commun. 119:860–867.

    Article  CAS  Google Scholar 

  • Viitanen, P., Garcia, M. L., Foster, D. L., Kaczorowski, G. J., and Kaback, H. R., 1983, Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. 2. Deuterium solvent isotope effects, Biochemistry 22:2531–2536.

    Article  PubMed  CAS  Google Scholar 

  • Viitanen, P., Garcia, M. L., and Kaback, H. R., 1984, Purified, reconstituted lac carrier protein from Escherichia coli is fully functional, Proc. Natl. Acad. Sci. U.S.A. 81:1629–1633.

    Article  CAS  Google Scholar 

  • Wong, P. T. S., Kashket, E. R., and Wilson, T. H., 1970, Energy coupling in the lactose transport system of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 65:63–69.

    Article  CAS  Google Scholar 

  • Wright, J. K., Weigel, U., Lustig, A., Bocklage, H., Mieschendahl, M., Müller-Hill, B., and Overath, P., 1983, Does the lactose carrier of Escherichia coli function as a monomer? FEBS Lett. 162:11–15.

    Article  PubMed  CAS  Google Scholar 

  • Zoller, M. J., and Smith, M., 1983, Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors, Methods Enzymol. 100:468–500.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kaback, H.R. (1986). Studies of a Biological Energy Transducer. In: Poste, G., Crooke, S.T. (eds) New Insights into Cell and Membrane Transport Processes. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5062-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5062-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5064-4

  • Online ISBN: 978-1-4684-5062-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics