Advertisement

Studies of a Biological Energy Transducer

The lac Permease of Escherichia coli
  • H. R. Kaback
Part of the New Horizons in Therapeutics book series (NHTH)

Abstract

In much the same way that the double helix model of DNA has provided the backbone for molecular genetics, the chemiosmotic hypothesis formulated and refined by Peter Mitchell during the 1960s (Mitchell, 1961, 1963, 1966) is now the conceptual framework for a wide variety of bioenergetic phenomena. In its most general form (Fig. 1), the chemiosmotic concept postulates that the immediate driving force for many processes in energy-coupling membranes is a H+ electrochemical gradient (\(Delta \overline \mu _{H^ + }\) ) composed of electrical and chemical parameters according to the following relationship: \( Delta \overline \mu _{H^ + } /F = \Delta \psi - 2.3RT/F \Delta pH \) where Δψ represents the electrical potential across the membrane and the ΔpH is the chemical difference in H+ concentration across the membrane (R is the gas constant, T is absolute temperature, F is the Faraday constant; 2.3RT/F is equal to 58.8 at room temperature) (Mitchell, 1961).

Keywords

Active Transport Reconstituted System Hydrophilic Segment Lactose Permease Lactose Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beyreuther, K., Beiseler, B., Ehring, R., and Müller-Hill, B., 1981, Identification of internal residues of lactose permease of Escherichia coli by radiolabel of peptide mixtures, in: Methods in Protein Sequence Analysis (M. Elzina, ed.), Humana Press, Clifton, NJ, p. 139.Google Scholar
  2. Carrasco, N., Herzlinger, D., DeChiara, S., Danho, W., Gabriel, T. F., and Kaback, H. R., 1983, Topology of the lac protein in the membrane of Escherichia coli, Biophys. J. 45:83a.Google Scholar
  3. Carrasco, N., Herzlinger, D., Mitchell, R., DeChiara, S., Danho, W., Gabriel, T. F., and Kaback, H. R., 1984a, Intramolecular dislocation of the COOH-terminus of the lac carrier protein in reconstituted proteoliposomes, Proc. Natl. Acad. Sci. U.S.A. 81:4672–4676.PubMedCrossRefGoogle Scholar
  4. Carrasco, N., Viitanen, P., Herzlinger, D., and Kaback, H. R., 1984b, Monoclonal antibodies against the lac carrier protein from Escherichia coli, I. Functional studies, Biochemistry 23:3681–3687.PubMedCrossRefGoogle Scholar
  5. Costello, M. J., Viitanen, P., Carrasco, N., Foster, D. L., and Kaback, H. R., 1984, Morphology of proteoliposomes reconstituted with purified lac carrier protein from Escherichia coli, J. Biol. Chem. 259:15579–15586.Google Scholar
  6. Foster, D. L., Boublik, M., and Kaback, H. R., 1983, Structure of the lac carrier protein of Escherichia coli, J. Biol. Chem. 258:31.Google Scholar
  7. Fox, C. F., and Kennedy, E. P., 1965, Specific labeling and partial purification of the M protein, a component of the ß-galactoside transport system of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 54:891–899.CrossRefGoogle Scholar
  8. Garcia, M. L., Viitanen, P., Foster, D. L., and Kaback, H. R., 1983, Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. I. Effect of pH and imposed membrane potential on efflux, exchange and counterflow, Biochemistry 22:2524–2531.PubMedCrossRefGoogle Scholar
  9. Goldkorn, T., Rimon, G., and Kaback, H. R., 1983, Topology of the lac carrier protein in the membrane of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 80:3322–3326.CrossRefGoogle Scholar
  10. Herzlinger, D., Viitanen, P., Carrasco, N., and Kaback, H. R., 1984, Monoclonal antibodies against the lac carrier protein from Escherichia coli. II. Binding studies with membrane vesicles and proteoliposomes reconstituted with purified lac carrier protein, Biochemistry 23:3688–3693.PubMedCrossRefGoogle Scholar
  11. Herzlinger, D., Carrasco, N., and Kaback, H. R., 1985, Functional and immunochemical characterization of a mutant of Escherichia coli energy uncoupled for lactose transport. Biochemistry 24:221–229.PubMedCrossRefGoogle Scholar
  12. Hong, J.-S., 1977, An ecf mutation in Escherichia coli pleiotropically affecting energy coupling in active transport but not generation or maintenance of membrane potential, J. Biol. Chem. 252:8582–8588.PubMedGoogle Scholar
  13. Kaback, H. R., 1976, Molecular biology and energetics of membrane transport, J. Cell. Physiol. 89:575–594.PubMedCrossRefGoogle Scholar
  14. Kaback, H. R., 1983, Thelac carrier protein in Escherichia coli: From membrane to molecule, J. Membr. Biol. 76:95.PubMedCrossRefGoogle Scholar
  15. Kaback, H. R., 1986, Active transport in Escherichia coli: From membrane to molecule, in: Physiology of Membrane Disorders (T. E. Andreoli, J. F. Hoffman, D. D. Fanestil, and S. G. Schultz, eds.). Plenum Press, New York, pp. 387–407.CrossRefGoogle Scholar
  16. Matsushita, K., Patel, L., Gennis, R. B., and Kaback, H. R., 1983, Reconstitution of active transport in proteoliposomes containing cytochome o oxidase and lac carrier protein purified from Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 80:4889–4893.CrossRefGoogle Scholar
  17. Matsushita, K., Patel, L., and Kaback, H. R., 1984, Cytochromeo oxidase from Escherichia coli. Characterization of the enzyme and mechanism of electrochemical proton gradient generation, Biochemistry 23:4703–4714.PubMedCrossRefGoogle Scholar
  18. Mieschendahl, M., Büchel, D., Bocklage, H., and Müller-Hill, B., 1981, Mutations in the lac y gene of Escherichia coli define functional organization of lactose permease, Proc. Natl. Acad. Sci. U.S.A. 78:7652–7656.PubMedCrossRefGoogle Scholar
  19. Mitchell, P., 1961, Coupling of phosphorylation to electron hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148’169.PubMedCrossRefGoogle Scholar
  20. Mitchell, P., 1963, Molecule, group, and electron translocation through natural membranes, Biochem. Soc. Symp. 22:142–148.Google Scholar
  21. Mitchell, P., 1966, Chemiosmotic Coupling and Energy Transduction, Glynn Research Ltd., Bodmin, UK.Google Scholar
  22. Overath, P., and Wright, J. K., 1983, Lactose permease: A carrier on the move, Trends Biochem. Sci. 8:404–408.CrossRefGoogle Scholar
  23. Plate, C. A., and Suit, J. L., 1981, Theeup genetic locus of Escherichia coli and its role in H+/solute symport, J. Biol. Chem. 256:12974–12980.PubMedGoogle Scholar
  24. Seckler, R., and Wright, J. K., 1984, Sidedness of native membrane vesicles of Escherichia coli and orientation of the reconstituted lactose:H+ carrier, Eur. J. Biochem. 142:269–279.PubMedCrossRefGoogle Scholar
  25. Seckler, R., Wright, J. K., and Overath, P., 1983, Peptide-specific antibody locates the COOH terminus of the lactose carrier of Escherichia coli on the cytoplasmic side of the plasma membrane, J. Biol. Chem. 258:10817–10820.PubMedGoogle Scholar
  26. Trumble, W. R., Viitanen, P. V., Sarkar, H. K., Poonian, M. S., and Kaback, H. R., 1984, Site-directed mutagenesis of Cys 148 in the lac carrier protein of Escherichia coli, Biochem. Biophys. Res. Commun. 119:860–867.CrossRefGoogle Scholar
  27. Viitanen, P., Garcia, M. L., Foster, D. L., Kaczorowski, G. J., and Kaback, H. R., 1983, Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. 2. Deuterium solvent isotope effects, Biochemistry 22:2531–2536.PubMedCrossRefGoogle Scholar
  28. Viitanen, P., Garcia, M. L., and Kaback, H. R., 1984, Purified, reconstituted lac carrier protein from Escherichia coli is fully functional, Proc. Natl. Acad. Sci. U.S.A. 81:1629–1633.CrossRefGoogle Scholar
  29. Wong, P. T. S., Kashket, E. R., and Wilson, T. H., 1970, Energy coupling in the lactose transport system of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 65:63–69.CrossRefGoogle Scholar
  30. Wright, J. K., Weigel, U., Lustig, A., Bocklage, H., Mieschendahl, M., Müller-Hill, B., and Overath, P., 1983, Does the lactose carrier of Escherichia coli function as a monomer? FEBS Lett. 162:11–15.PubMedCrossRefGoogle Scholar
  31. Zoller, M. J., and Smith, M., 1983, Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors, Methods Enzymol. 100:468–500.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • H. R. Kaback
    • 1
  1. 1.Roche Research CenterRoche Institute of Molecular BiologyNutleyUSA

Personalised recommendations