Sorting in the Prelysosomal Compartment (CURL)

Immunoelectron Microscopy of Receptors and Ligands
  • Hans J. Geuze
  • Alan I. Schwartz
  • Jan W. Slot
  • Ger J. Strous
  • Jos E. Zijderhand-Bleekemolen
Part of the New Horizons in Therapeutics book series (NHTH)


Adsorptive endocytosis provides cells with a means of specifically internalizing exogenous substances (ligands). The specificity for each ligand’s delivery is conferred by the nature of the specific receptors on the recipient cell. The initial interaction between ligands and cells is initiated at the extracytoplasmic surface of the plasma membrane. One class of such interactions, receptor-mediated endocytosis (RME), defines a sequence of events that leads to the targeting of the internalized ligands to specific intracellular destinations. It is now well established that during RME clathrin-coated pits at the plasma membrane accumulate receptor-ligand complexes. These specialized structures then pinch off from the surface to form coated vesicles, which have a lifetime of only about 1 min (Petersen and van Deurs, 1983). The subsequent destination of each ligand and receptor then depends on the nature of the receptor system. In many systems ligands are transported to the lysosomes for degradation, whereas the receptors are spared this fate. These receptors are rerouted back to the plasma membrane via poorly understood mechanisms and pathways for subsequent endocytotic cycles. Examples of such receptor systems are those for asialoglycoproteins (Schwartz, 1984), lysosomal enzymes (Sly and Fischer, 1982), and low-density lypoproteins(Brown et al., 1983).


Lysosomal Enzyme Golgi Complex Bile Canaliculus Coated Vesicle Colloidal Gold Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashwell, G., and Harford, J., 1982, Carbohydrate-specific receptors of the hver, Annu. Rev. Biochem. 51:531–554.PubMedCrossRefGoogle Scholar
  2. Brown, M. S., Anderson, R. G. W., and Goldstein, J. L., 1983, Recycling receptors: The round-trip itinerary of migrant membrane proteins, Cell 32:663–667.PubMedCrossRefGoogle Scholar
  3. Brown, W. J., and Farquhar, M. G., 1984, The mannose-6-phosphate receptor for lysosomal enzymes is concentrated in eis Golgi cisternae, Cell 36:295–307.PubMedCrossRefGoogle Scholar
  4. Carpenter, G., 1984, Properties of the receptor for epidermal growth factor, Cell 37:357–358.PubMedCrossRefGoogle Scholar
  5. Ciechanover, A., Schwartz, A. L., and Lodish, H. F., 1983, Sorting and recycling of cell surface receptors and endocytosed ligands: The asialoglycoprotein and transferrin receptors, J. Cell. Biochem. 23:107–130.PubMedCrossRefGoogle Scholar
  6. Deschuyteneer, M., Prieels, J. P., and Mosselmans, R., 1984, Galactose-specific adsorptive endocytosis: An ultrastructural qualitative and quantitative study in cultured rat hepatocytes, Biol. Cell 50:17–30.PubMedCrossRefGoogle Scholar
  7. Dunn, W. A., and Hubbard, A. L., 1984, Receptor-mediated endocytosis of epidermal growth factor by hepatocytes in the perfused rat liver: Ligand and receptor dynamics, J. Cell Biol. 98:2148–2159.PubMedCrossRefGoogle Scholar
  8. Geuze, H. J., and Slot, J. W., 1980, The subcellular localization of immunoglobulin in mouse plasma cells, as studied with immunoferritin cytochemistry on ultrathin frozen sections, Am. J. Anat. 158:161–169.PubMedCrossRefGoogle Scholar
  9. Geuze, H. J., Slot, J. W., van der Ley, P. A., and Scheffer, R. C. T., 1981, Use of colloidal gold particles in double-labeling immunoelectron microscopy of ultrathin frozen sections, J. Cell Biol. 89:653–655.PubMedCrossRefGoogle Scholar
  10. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Lodish, H. F., and Schwartz, A. L., 1982, Immunocytochemical localization of the receptor for asialoglycoprotein in rat liver cells, J. Cell Biol. 92:865–870.PubMedCrossRefGoogle Scholar
  11. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Lodish, H. F., and Schwartz, A. L., 1983a, Intra-cellular site of asialoglycoprotein receptor-ligand uncoupling: Double-label immunoelectron microscopy during receptor-mediated endocytosis. Cell 32:277–287.PubMedCrossRefGoogle Scholar
  12. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., and Schwartz, A. L., 1983b, The pathway of the asialoglycoprotein-ligand during receptor-mediated endocytosis: A morphological study with colloidal gold/ligand in the human hepatoma cell line. Hep G2, Eur. J. Cell Biol. 32:38–44.PubMedGoogle Scholar
  13. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Hasilik, A., and von Figura, K., 1984a, Ultrastructural localization of the mannose 6-phosphate receptor in rat liver, J. Cell Biol. 98:2047–2054.PubMedCrossRefGoogle Scholar
  14. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Peppard, J., von Figura, K., Hasilik, A., and Schwartz, A. L., 1984b, Intracellular receptor sorting during endocytosis: Comparative immunoelectron microscopy of multiple receptors in rat liver. Cell 37:195–204.PubMedCrossRefGoogle Scholar
  15. Geuze, H. J., Slot, J. W., Strous, G. J., Luzio, J. P., and Schwartz, A. L., 1984c, A cycloheximide-resistant pool of receptors for asialoglycoproteins and mannose 6-phosphate residues in the Golgi complex of hepatocytes, EMBOJ. 3:2677–2685.Google Scholar
  16. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Hasilik, A., and von Figura, K., 1985, Possible pathways for lysosomal enzyme delivery, J. Cell Biol. 101:2253–2262.PubMedCrossRefGoogle Scholar
  17. Gonzales-Noriega, A., Grubb, J. H., Talkad, V., and Sly, W. S., 1980, Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling, J. Cell Biol. 85:839–852.CrossRefGoogle Scholar
  18. Helenius, A., Mellman, L, Wall, D., and Hubbard, A., 1983, Endosomes, Trends Biochem. Soc. 8:245–250.CrossRefGoogle Scholar
  19. Kuhn, L. C., and Kraehenbuhl, J.-P., 1982, The sacrificial receptor translocation of polymeric TgA across epithelia, Trends Biochem. Sci. 7:299–302.CrossRefGoogle Scholar
  20. Pastan, T., and Willingham, M. C., 1983, Receptor-mediated endocytosis: Coated pits, receptosomes and the Golgi, Trends Biochem. Sci. 7:250–254.CrossRefGoogle Scholar
  21. Petersen, O. W., and van Deurs, B., 1983, Serial-section analysis of coated pits and vesicles involved in adsorptive pinocytosis in cultured fibroblasts, J. Cell Biol. 96:277–281.PubMedCrossRefGoogle Scholar
  22. Pohlmann, R., Waheed, A., Hasilik, A., and von Figura, K., 1982, Synthesis of phosphorylated recognition marker in lysosomal enzymes is located in the eis part of Golgi apparatus, J. Biol. Chem. 257:5323–5325.PubMedGoogle Scholar
  23. Schwartz, A. L., 1984, The hepatic asialoglycoprotein receptor, CRC Crit. Rev. Biochem. 16:207–233.PubMedCrossRefGoogle Scholar
  24. Schwartz, A. L., Marshak-Rothstein, A., Rup, D., and Lodish, H., 1981, Identification and quantification of the rat hepatocyte asialoglycoprotein receptor, Proc. Natl. Acad. Sci. U.S.A. 78:3348–3352.PubMedCrossRefGoogle Scholar
  25. Schwartz, A. L., Bolognesi, A., and Fridovich, S. E., 1984, Recycling of the asialoglycoprotein receptor and the effect of lysosomotropic amines in hepatoma cells, J. Cell Biol. 98:732–738.PubMedCrossRefGoogle Scholar
  26. Schwartz, A. L., Strous, G. J. A. M., Slot, J. W., and Geuze, H. J., 1985, Immunoelectron microscopic localization of acidic intracellular compartments in hepatoma cells, EMBOJ. 4:899–904.Google Scholar
  27. Slot, J. W., and Geuze, H. J., 1981, Sizing of protein-A colloidal gold probes for immunoelectron microscopy, J. Cell Biol. 90:533–536.PubMedCrossRefGoogle Scholar
  28. Slot, J. W., and Geuze, H. J., 1983, The use of protein A-colloidal gold (PAG) complexes as immunolabels in ultra-thin frozen sections, in: Immunohistochemistry (A. C. Cuello, ed.), IBRO, John Wiley & Sons, Chichester, New York, pp. 323–346.Google Scholar
  29. Slot, J. W., and Geuze, H. J., 1985, A new method of preparing gold probes for multiple-labeling cytochemistry, Eur. J. Cell Biol. 38:87–93.PubMedGoogle Scholar
  30. Sly, W. S., and Fischer, H. D., 1982, The phosphomannosyl recognition system for intracellular and intercellular transport of lysosomal enzymes, J. Cell. Biochem. 18:67–85.PubMedCrossRefGoogle Scholar
  31. Tokuyasu, K. T., 1978, A study of positive staining of ultrathin frozen sections, J. Ultrastruct. Res. 63:287–307.PubMedCrossRefGoogle Scholar
  32. Tycko, B., and Maxfield, F. R., 1982, Rapid acidification of endocytotic vesicles containing alpha-2-macroglobulin. Cell 28:643–651.PubMedCrossRefGoogle Scholar
  33. Wall, D. A., Wilson, G., and Hubbard, A. L., 1980, The galactose-specific recognition system of mammalian liver: The route of ligand internalization in rat hepatocytes, Cell 21:79–93.PubMedCrossRefGoogle Scholar
  34. Willingham, M. C., Pastan, I., and Sahagian, G. G., 1983, Ultrastructural immunocyto-chemical locahzation of the phosphomannosyl receptor in Chinese hamster ovary (CHO) cells, J. Histochem. Cytochem. 31:1–11.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Hans J. Geuze
    • 1
  • Alan I. Schwartz
    • 2
  • Jan W. Slot
    • 1
  • Ger J. Strous
    • 1
  • Jos E. Zijderhand-Bleekemolen
    • 1
  1. 1.Laboratory of Cell Biology, Medical FacultyUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Division of Pediatric Haematology/Oncology, Children’s HospitalDana Farber Institute and Harvard Medical SchoolBostonUSA

Personalised recommendations