The Epithelial Sodium Channel

  • Lawrence G. Palmer
Part of the New Horizons in Therapeutics book series (NHTH)


Epithelial Na+ channels form an essential component of the Na+ reabsorptive system in a variety of tissues. They permit entry of Na+ into the epithelial cell from the outer fluid compartment, e.g., urine, feces, sweat. Furthermore, they regulate the reabsorptive flow of Na+ across many epithelia and thus are critical to the maintenance of constant salt levels and fluid volumes in the various body compartments of vertebrates.


Apical Membrane Sodium Transport Frog Skin Toad Urinary Bladder Toad Bladder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Augustus, J., Bijman, J., and Os, C. H., 1978, Electrical resistance of rabbit submaxillary main duct: A tight epithelium with leaky cell membranes, J. Membr. Biol. 43:203–226.PubMedCrossRefGoogle Scholar
  2. Benos, D. J., Simon, S. A., Mandel, L. J., and Cala, P. M., 1976, Effect of amiloride and some of its analogues on cation transport in isolated frog skin and thin lipid membranes, J. Gen. Physiol. 68:43–63.PubMedCrossRefGoogle Scholar
  3. Benos, D. J., Mandel, L. J., and Simon, S. A., 1980, Cation selectivity and competition at the sodium entry site in frog skin, J. Gen. Physiol. 76:233–247.PubMedCrossRefGoogle Scholar
  4. Benos, D. J., Hyde, B. A., and Latorre, R., 1983, Sodium flux ratio through the amiloride-sensitive entry pathway in frog skin, J. Gen. Physiol. 81:667–685.PubMedCrossRefGoogle Scholar
  5. Bentley, P. J., 1968, Amiloride: A potent inhibitor of sodium transport across the toad bladder, J. Physiol. (Lond.) 195:317–330.Google Scholar
  6. Bindslev, N., Cuthbert, A. W., Edwardson, J. M., and Skadhauge, E., 1982, Kinetics of amiloride interaction in the hen copradeum in vitro, Pflueger’s Arch. 392:340–346.Google Scholar
  7. Chase, H. S., Jr., and Al-Awqati, Q., 1981, Regulation of the sodium permeability of the luminal border of toad bladder by intracellular sodium and calcium, J. Gen. Physiol. 77:693–712.PubMedCrossRefGoogle Scholar
  8. Chase, H. S., Jr., and Al-Awqati, Q., 1983, Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder, J. Gen. Physiol. 81:643–665.PubMedCrossRefGoogle Scholar
  9. Christensen, O., and Bindslev, N., 1982, Fluctuation analysis of short-circuit current in a warm-blooded, sodium retaining epithelium: Site current, density and interaction with triamterene, J. Membr. Biol. 65:19–30.PubMedCrossRefGoogle Scholar
  10. DeLong, J., and Civan, M. M., 1984, Apical Na entry in split frog skin: Current voltage relationship, J. Membr. Biol. 82:25–40.CrossRefGoogle Scholar
  11. Edelman, I. S., 1978, Candidate mediators in the action of aldosterone on Na+ transport, in: Membrane Transport Processes, Vol. 1 (J. H. Hoffman, ed.). Raven Press, New York, pp. 125–140.Google Scholar
  12. Eisenman, G., 1962, Cation selective glass electrodes and their mode of operation, Biophys. J. 2(2, pt. 2):259–323.PubMedCrossRefGoogle Scholar
  13. Frazier, H. S., Dempsey, E. F., and Leaf, A., 1962, Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin, J. Gen. Physiol. 45:529–543.PubMedCrossRefGoogle Scholar
  14. Fuchs, W., Hviid-Larsen, E., and Lindemann, B., 1977, Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin, J. Physiol. (Lond.) 267:137–166.Google Scholar
  15. Garty, H., 1984, Amiloride blockable sodium fluxes in toad bladder membrane vesicles, J. Membr. Biol. 82:269–280.PubMedCrossRefGoogle Scholar
  16. Garty, H., and Edelman, I. S., 1983, Amiloride-sensitive trypsinization of apical Na channels: Analysis of hormonal regulation of sodium transport in toad bladder, J. Gen. Physiol. 81:785–803.PubMedCrossRefGoogle Scholar
  17. Garty, H., and Lindemann, B., 1984, Feedback inhibition of sodium uptake in K+-depolarized toad urinary bladders, Biochim. Biophys. Acta 771:89–98.PubMedCrossRefGoogle Scholar
  18. Garty, H., Edelman, L S., Lindemann, B., 1983, Metabolic regulation of apical sodium permeability in toad urinary bladder in the presence and absence of aldosterone, J. Membr. Biol. 74:15–24.PubMedCrossRefGoogle Scholar
  19. Grinstein, S., and Erlij, D., 1978, Intracellular Ca++ and the regulation of Na+ transport in the frog skin, Proc. R. Soc. Lond. [Biol.] 202:353–360.CrossRefGoogle Scholar
  20. Hamilton, K., and Eaton, D. C., 1985, Single channel recordings from the amiloride-sensitive epithelial Na+ channel. Am. J. Physiol. 18:C200-C207.Google Scholar
  21. Helman, S. L, Cox, T. C., and Van Driessche, W., 1983, Hormonal control of apical membrane Na transport in epithelia: Studies with fluctuation analysis, J. Gen. Physiol. 82:201–220.PubMedCrossRefGoogle Scholar
  22. Henrich, M., and Lindemann, B., 1984, Voltage dependence of channel currents and channel densities in the apical membrane of the toad urinary bladder, in: Intestinal Absorption and Secretion (E. Skadhauge, ed.), MTP Press, Lancaster, pp. 209–220.Google Scholar
  23. Herrera, F. C., 1965, Effect of insulin on short-circuit current and sodium transport across toad urinary bladder. Am. J. Physiol. 209:819–824.PubMedGoogle Scholar
  24. Hille, B., 1971, The permeability of the sodium channel to organic cations in myelinated nerve, J. Gen. Physiol. 58:599–619.PubMedCrossRefGoogle Scholar
  25. Hille, B., 1975, Ionic selectivity of Na and K channels of nerve membranes, in: Membranes: A Series of Advances, Vol. 3: Lipid Bilayers and Biological Membranes: Dynamic Properties (G. Eisenman, ed.). Marcel Dekker, New York, pp. 255–323.Google Scholar
  26. Hille, B., and Schwartz, W., 1978, Potassium channels as multi-ion single file pores, J. Gen. Physiol. 72:409–442.PubMedCrossRefGoogle Scholar
  27. Hodgkin, A. L., and Keynes, R. D., 1955, The potassium permeability of a giant nerve fibre, J. Physiol. (Lond.) 128:61–88.Google Scholar
  28. Kipnowski, J., Park, C. S., and Farnestil, D. D., 1983, Modification of carboxyl of Na+ channel inhibits aldosterone action on Na+ transport. Am. J. Physiol. 245:F726-F734.PubMedGoogle Scholar
  29. Koefoed-Johnsen, V., and Ussing, H. H., 1958, The nature of the frog skin potential. Acta Physiol. Scand. 42:298–308.PubMedCrossRefGoogle Scholar
  30. Latorre, R., and Miller, C., 1983, Conduction and selectivity in potassium channels, J. Membr. Biol. 71:11–30.PubMedCrossRefGoogle Scholar
  31. Lewis, S. A., and Wills, N. K., 1981, Localization of the aldosterone response in rabbit urinary bladder by electrophysiological techniques, Ann. N.Y. Acad. Sci. 372:56–62.PubMedCrossRefGoogle Scholar
  32. Lewis, S. A., Ifshin, M. S., Loo, D. D. F., and Diamond, J. M., 1984, Studies of sodium channels in rabbit urinary bladder by noise analysis, J. Membr. Biol. 80:135–151.PubMedCrossRefGoogle Scholar
  33. Li, J. H.-Y., and Lindemann, B., 1983, Chemical stimulation of Na transport through amiloride-blockable channels of frog skin epithelium, J. Membr. Biol. 75:179–192.PubMedCrossRefGoogle Scholar
  34. Li, J. H.-Y., Palmer, L. G., Edelman, I. S., and Lindemann, B., 1982, The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone, J. Membr. Biol. 64:77–89.PubMedCrossRefGoogle Scholar
  35. Lindemann, B., and Van Driessche, W., 1977, Sodium specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover, Science 195:292–294.PubMedCrossRefGoogle Scholar
  36. Lindemann, B., and Van Driessche, W., 1978, The mechanism of Na uptake through Na-selective channels in the epithelium of frog skin, in: Membrane Transport Processes, Vol. 1 (J. F. Hoffmann, ed.). Raven Press, New York, pp. 155–178.Google Scholar
  37. Lipton, P., 1972, Effect of changes in osmolarity on sodium transport across isolated toad bladder. Am. J. Physiol. 222:821–828.PubMedGoogle Scholar
  38. Machlup, S., Hoshiko, T., and Frehland, E., 1982, Sodium and amiloride competition in apical membrane channels: A 3-state model for noise, Biophys. J. 37:281a.Google Scholar
  39. Macknight, A. D. C., Di Bona, D. R., and Leaf, A., 1980, Sodium transport across toad urinary bladder: A model “tight” epithelium, Physiol. Rev. 60:615–715.PubMedGoogle Scholar
  40. Moore, R. D., Fidelman, M. L., Hansen, J. C., and Otis, J. N., 1982, The role of intracellular pH in insulin action, in: Intracellular pH: Its Measurement, Regulation and Utilization in Cellular Functions (R. Nuccitelli and D. W. Deamer, eds.), Alan R. Liss, New York, pp. 385–416.Google Scholar
  41. Nagel, W., Durham, J. H., and Brodsky, W. A., 1981, Electrical characteristics of the apical and basal-lateral membranes in the turtle bladder epithelial cell layer, Biochim. Biophys Acta 646:77–87.PubMedCrossRefGoogle Scholar
  42. O’Neil, R. G., and Boulpaep, E. L., 1979, Effect of amiloride on the apical cell membrane cation channels of a sodium-absorbing, potassium-secreting renal epithelium, J. Membr. Biol. 50:365–387.PubMedCrossRefGoogle Scholar
  43. O’Neil, R. G., and Helman, S. L, 1977, Transport characteristics of renal collecting tubules: Influences of DOCA and diet. Am. J. Physiol. 233:F544-F558.PubMedGoogle Scholar
  44. Orloff, J., and Handler, J., 1967, The role of adenosine 3’-5’ phosphate in the action of antidiuretic hormone. Am. J. Med. 42:757–768.PubMedCrossRefGoogle Scholar
  45. Palmer, L. G., 1982a, Ion selectivity of the apical membrane Na channel in the toad urinary bladder, J. Membr. Biol. 67:91–98.PubMedCrossRefGoogle Scholar
  46. Palmer, L. G., 1982b, Na+ transport and flux ratio through apical Na+ channels in toad bladder. Nature 297:688–690.PubMedCrossRefGoogle Scholar
  47. Palmer, L. G., 1984a, Voltage-dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder, J. Membr. Biol. 80:153–165.PubMedCrossRefGoogle Scholar
  48. Palmer, L. G., 1985a, Modulation of apical Na permeability of the toad urinary bladder by intracellular Na, Ca and H, J. Membr. Biol. 83:57–69.PubMedCrossRefGoogle Scholar
  49. Palmer, L. G., 1985b, Interactions of amiloride and other blocking cations with the apical Na channel in the toad urinary bladder, J. Membr. Biol. 87:191–199.PubMedCrossRefGoogle Scholar
  50. Palmer, L. G., and Edelman, I. S., 1981, Control of sodium permeability in the toad urinary bladder by aldosterone, Ann. N.Y. Acad. Sci. 372:1–14.PubMedCrossRefGoogle Scholar
  51. Palmer, L. G., Edelman, I. S., and Lindemann, B., 1980, Current-voltage analysis of apical Na transport in the toad urinary bladder: Effects of inhibitors of transport and metabolism, J. Membr. Biol. 57:59–71.PubMedCrossRefGoogle Scholar
  52. Palmer, L. G., Li, J. H.-Y., Lindemann, B., and Edelman, I. S., 1982, Aldosterone control of the density of sodium channels in the toad urinary bladder, J. Membr. Biol. 64:91–102.PubMedCrossRefGoogle Scholar
  53. Quinton, P. M., 1981, Effects of some ion transport inhibitors on secretion and reabsorption in intact and perfused single human sweat glands, Pflüger’s Arch. 391:309–313.Google Scholar
  54. Sahib, M. K., Schwartz, J. H., and Handler, J. S., 1978, Inhibition of toad urinary bladder sodium transport by carbamylcholine: Possible role of cyclic GMP, Am. J. Physiol. 235:F586-F591.PubMedGoogle Scholar
  55. Sariban-Sohraby, S., Burg, M., Weismann, W. P., Chiang, P. K., and Johnson, J. P., 1984, Methylation increases sodium transport into A6 apical membrane vesicles. Possible mode of aldosterone secretion. Science 225:745–764.PubMedCrossRefGoogle Scholar
  56. Siegel, B., and Civan, M. M., 1976, Aldosterone and insulin effects on driving force of Na+ pump in toad bladder, Am. J. Physiol. 230:1603–1608.PubMedGoogle Scholar
  57. Steiner, R. A., Oehme, M., Ammann, D., and Simon, W., 1979, Neutral carrier sodiumion-selective microelectrode for intracellular studies. Anal. Chem. 51:351–353.CrossRefGoogle Scholar
  58. Taylor, A., and Windhager, E. E., 1979, Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am. J. Physiol. 236:F505-F512.PubMedGoogle Scholar
  59. Thomas, S. R., Suzuki, Y., Thompson, S. M., and Schultz, S. G., 1983, Electrophysiology of Necturus urinary bladder: I. “Instantaneous” current-voltage relations in the presence of varying mucosal sodium concentrations, J. Membr. Biol. 73:157–175.PubMedCrossRefGoogle Scholar
  60. Thompson, S. M., and Dawson, D. C., 1978, Sodium uptake across the apical border of the isolated turtle colon: Confirmation of the two-barrier model, J. Membr. Biol. 42:357–374.PubMedCrossRefGoogle Scholar
  61. Thompson, S. M., Suzuki, Y., and Schultz, S. G., 1982, The electrophysiology of rabbit descending colon, I. Instantaneous transepithelial current-voltage relations and the current-voltage relations of the Na-entry mechanism, J. Membr. Biol. 66:41–54.PubMedCrossRefGoogle Scholar
  62. Van Driessche, W., and Lindemann, B., 1979, Concentration dependence of currents through single sodium-selective pores in frog skin, Nature 282:519–520.PubMedCrossRefGoogle Scholar
  63. Wiesmann, W., Sinha, S., and Klahr, S., 1976, Effects of acetylcholine (ACh) and carbachol on sodium transport in the toad bladder, Kidney Int. 10:603.Google Scholar
  64. Woodhull, A. M., 1973, Ionic blockage of sodium channels, J. Gen. Physiol. 61:687–708.PubMedCrossRefGoogle Scholar
  65. Zeiske, W., Wills, N. K., and Van Driessche, W., 1982, Na+ channels and amiloride-induced noise in the mammalian colon epithelium, Biochim. Biophys. Acta 688:201–210.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Lawrence G. Palmer
    • 1
  1. 1.Department of PhysiologyCornell University Medical CollegeNew YorkUSA

Personalised recommendations