Frequency and Time Domain Analysis of Epithelial Transport Regulation

  • Simon A. Lewis
  • John W. Hanrahan
Part of the New Horizons in Therapeutics book series (NHTH)


The prime responsibility of most epithelia is to maintain plasma electrolyte and nonelectrolyte composition. Once a perturbation in plasma composition is sensed by osmo-, chemo-, or pressure receptors, a hormonal or neural signal can then initiate a series of intracellular events that ultimately modify the rate and sometimes even the direction of epithelial transport. To perform this function, an epithelium must be constructed so that it can actively and on demand absorb, secrete, or restrict the movements of substances between the plasma and external environment.


Apical Membrane Basolateral Membrane Corner Frequency Frog Skin Channel Density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arruda, J. A. L., Sabatini, S., Mola, R., and Dytko, G., 1980, Inhibition of H+ secretion in the turtle bladder by colchicine and vinblastine, J. Lab. Clin. Med. 96:450–459.PubMedGoogle Scholar
  2. Christensen, O., and Bindslev, N., 1982, Fluctuation analysis of short-circuit current in a warm-blooded sodium retaining epithelium: Site, current density and interaction with triamterene, J. Membr. Biol 65:19–30.PubMedCrossRefGoogle Scholar
  3. Clausen, C., and Dixon, T. E., 1984, Membrane area changes associated with proton secretion in turtle urinary bladder studied using impedance analysis techniques, in: Current Topics in Membranes and Transport, Vol. 20 (J. B. Wade and S. A. Lewis, eds.). Academic Press, Orlando, Florida, pp. 47–60.Google Scholar
  4. Clausen, C., and Fernandez, J. M., 1981, A low-cost method for rapid transfer function measurements with direct application to biological impedance analysis. Pflugers Arch. 390:290–295.PubMedCrossRefGoogle Scholar
  5. Clausen, C., and Wills, N. K., 1981, Impedance analysis in epithelia, in: Ion Transport by Epithelia. (S. G. Schultz, ed.). Raven Press, New York, pp. 79–91.Google Scholar
  6. Clausen, C., Lewis, S. A., and Diamond, J. M., 1979, Impedance analysis of a tight epithelium using a distributed resistance model, Biophys. J. 26:291–318.PubMedCrossRefGoogle Scholar
  7. Clausen, C., Machen, T. E., and Diamond, J. M., 1983, Use of AC impedance analysis to study membrane changes related to acid secretion in amphibian gastric mucosa, Biophys. J. 41:167–178.PubMedCrossRefGoogle Scholar
  8. Cole, K. S., 1968, Membranes, Ions, and Impulses, University of California Press, Berkeley.Google Scholar
  9. Colquhoun, D., and Hawkes, A. G., 1983, The principles of the stochastic interpretation of ion-channel mechanisms, in:Single-Channel Recording (B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 135–175.Google Scholar
  10. Cull-Candy, S. G., and Parker, I., 1983, Experimental approaches used to examine single glutamate receptor ion channels in locust muscle fibers, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 389–400.Google Scholar
  11. Diamond, J. M., and Machen, T. E., 1983, Impedance analysis in epithelia and the problem of gastric acid secretion, J. Membr. Biol. 72:17–41.PubMedCrossRefGoogle Scholar
  12. Dionne, V. E., 1981, The kinetics of slow muscle acetylcholine-operated channels in the garter snake. J. Physiol. (Lond.) 310:159–190.Google Scholar
  13. Fuchs, W., Larsen, E. H., and Lindemann, B., 1977, Current-voltage curve of sodium channels and concentration dependence of sodium-permeability in frog skin, J. Physiol. (Lond.) 267:137–166.Google Scholar
  14. Garty, H., and Edelman, I. S., 1983, Amiloride-sensitive trypsinization of apical sodium channels, J. Gen. Physiol. 81:785–803.PubMedCrossRefGoogle Scholar
  15. Gluck, S., Cannon, C., and Al-Awqati, Q., 1982, Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane, Proc. Natl. Acad. Sci. U.S.A. 79:4327–4331.PubMedCrossRefGoogle Scholar
  16. Gögelein, H., and Greger, R., 1984, Single channel recordings from basolateral and apical membranes of renal proximal tubules, Pflugers Arch. 401:424–426.PubMedCrossRefGoogle Scholar
  17. Guggino, S. E., Suarez-Isla, B. A., Guggino, W. B., Green, N., and Sacktor, B., 1985, Ba++ sensitive, Ca++ activated K+ channels in cultured rabbit medullary thick ascending limb cells (MTAL) and cultured chick kidney cells (CK), Kidney Int. 27:209.Google Scholar
  18. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391:85–100.PubMedCrossRefGoogle Scholar
  19. Handler, J. S., Preston, A. S., and Orloff, J., 1972, Effect of ADH, aldosterone, ouabain and amiloride on toad bladder epithelial cells. Am. J. Physiol. 222:1071–1074.PubMedGoogle Scholar
  20. Hanrahan, J. W., Alles, W. P., and Lewis, S. A., 1984, Basolateral anion and K channels from rabbit urinary bladder epithelium, J. Gen. Physiol. 84:30a.Google Scholar
  21. Hudson, R. L., and Schultz, S. G., 1984, Sodium coupled sugar transport: Effects on intracellular sodium activities and sodium pump activity. Science 224:1237–1239.PubMedCrossRefGoogle Scholar
  22. Hunter, M., Lopes, A. G., Boulpaep, E. L., and Giebisch, G., 1984, Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules, Proc. Natl. Acad. Sci. U.S.A. 81:4237–4239.PubMedCrossRefGoogle Scholar
  23. Koeppen, B. M., Beyenbach, K. W., and Helman, S. I., 1984, Single channel currents in renal tubules, Am. J. Physiol. 247:F380-F384.PubMedGoogle Scholar
  24. Lewis, S. A., and Alles, W. P., 1984, Analysis of ion transport using frequency domain measurements, in: Current Topics in Membranes and Transport, Vol. 20 (J. B. Wade and S. A. Lewis, eds.). Academic Press, Orlando, FL, pp. 87–103.Google Scholar
  25. Lewis, S. A., and de Moura, J. L. C., 1982, Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder. Nature 297:685–688.PubMedCrossRefGoogle Scholar
  26. Lewis, S. A., and de Moura, J. L. C., 1984, Apical membrane area of rabbit urinay bladder increases by fusion of intracellular vesicles: An electrophysiological study, J. Membr. Biol. 82:123–136.PubMedCrossRefGoogle Scholar
  27. Lewis, S. A., and Diamond, J. M., 1976, Na+ transport by rabbit urinary bladder, a tight epithelium, J. Membr. Biol. 28:1–40.PubMedCrossRefGoogle Scholar
  28. Lewis, S. A., Eaton, D. C., and Diamond, J. M., 1976, The mechanism of Na+ transport by rabbit urinary bladder, J. Membr. Biol. 28:41–70.PubMedCrossRefGoogle Scholar
  29. Lewis, S. A., Ifshin, M. S., Loo, D. D. F., and Diamond, J. M., 1984, Studies of sodium channels in rabbit urinary bladder by noise analysis, J. Membr. Biol. 80:135–151.PubMedCrossRefGoogle Scholar
  30. Lewis, S. A., Butt, A. G., Bowler, M. J., Leader, J. P., and Macknight, A. D. C., 1985, Effects of anions on cellular volume and transepithelial Na+ transport across toad urinary bladder, J. Memb. Biol. 83:119–137.CrossRefGoogle Scholar
  31. Li, J. H. Y., Palmer, L. G., Edelman, I. S., and Lindemann, B., 1982, The role of sodium-channel density in the natriferic response of the toad urinary bladder to a antidiuretic hormone, J. Membr. Biol. 64:77–89.PubMedCrossRefGoogle Scholar
  32. Lim, J. J., Kottra, G., Kampmann, L., and Frömter, E., 1984, Impedance analysis of Necturus gallbladder epithelium using extra-and intracellular microelectrodes, in: Current Topics in Membranes and Transport, Vol. 20 (J. B. Wade and S. A. Lewis, eds.). Academic Press, Orlando, FL, pp. 27–46.Google Scholar
  33. Lindemann, B., and Defelice, L. J., 1981, On the use of general network functions in the evaluation of noise spectra obtained from epithelia, in: Ion Transport by Epithelia (S. G. Schultz, ed.). Raven Press, New York, pp. 1–13.Google Scholar
  34. Lindemann, B., and Van Driessche, W., 1977, Sodium-specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover. Science 195:292–294.PubMedCrossRefGoogle Scholar
  35. Marty, A., Tan, Y. P., and Trautmann, A., 1984, Three types of calcium-dependent channels in rat lacrimal glands, J. Physiol. (Lond.) 357:293–325.Google Scholar
  36. Maruyama, Y., and Peterson, O. H., 1982a, Single channel currents in isolated patches of plasma membrane from basal surface of pancreatic acini. Nature 299:159–161.PubMedCrossRefGoogle Scholar
  37. Maruyama, Y., and Peterson, O. H., 1982b, Cholecystokinin activation of single-channel currents is mediated by internal messenger in pancreatic acinar cells. Nature 300:61–63.PubMedCrossRefGoogle Scholar
  38. Maruyama, Y., Peterson, O. H., Flanagan, P., and Pearson, G. T., 1983, Quantification of Ca2+-activated by K+ channels under hormonal control in pig pancreas acinar cells. Nature 305:288–232.CrossRefGoogle Scholar
  39. Minsky, B. D., and Chlapowski, F. J., 1978, Morphometric analysis of the translocation of luminal membrane between cytoplasm and cell surface of transitional epithelial cells during the expansion-contraction cycles of mammalian urinary bladder, J. Cell Biol. 77:685–697.PubMedCrossRefGoogle Scholar
  40. Nelson, D. J., Tang, J. M., and Palmer, L. G., 1984, Single-channel recordings of apical membrane chloride conductance in A6 epithelial cells, J. Membr. Biol. 80:81–89.PubMedCrossRefGoogle Scholar
  41. Olans, L., Sariban-Sohraby, S., and Benos, D. J., 1984, Saturation behavior of single amiloride-sensitive Na+ channels in planar lipid bilayers, Biophys. J. 46:831–835.PubMedCrossRefGoogle Scholar
  42. Palmer, L. G., and Lorenzen, M., 1983, Antidiuretic hormone dependent membrane capacitance and water permeability in the toad urinary bladder. Am. J. Physiol. 244:F195-F204.PubMedGoogle Scholar
  43. Palmer, L.G., Li, J. H. Y., Lindemann, B., and Edelman, I. S., 1982, Aldosterone control of the density of sodium channels in the toad bladder, J. Membr. Biol. 64:91–102.PubMedCrossRefGoogle Scholar
  44. Sariban-Sohraby, S., Burg, M., Wiesmann, W. P., Chiang, P. K., and Johnson, J. P., 1984a, Methylation increases sodium transport into A6 apical membrane vesicles: Possible mode of aldosterone action. Science 225:745–746.PubMedCrossRefGoogle Scholar
  45. Sariban-Sohraby, S., Latorre, R., Burg, M., Olans, L., and Benos, D., 1984b, Amiloride-sensitive epithelial Na+ channels reconstituted into planar lipid bilayer membranes, Nature 308:80–82.PubMedCrossRefGoogle Scholar
  46. Schifferdecker, E., and Frömter, F., 1978, The AC impedanceof Necturus gallbladder epithelium. Pflugers Arch. 377:125–133.PubMedCrossRefGoogle Scholar
  47. Stetson, D. L., and Steinmetz, P. R., 1983, Role of membrane fusion in CO2 stimulation of proton secretion by turtle bladder. Am. J. Physiol. 245:C113-C120.PubMedGoogle Scholar
  48. Stetson, D. L., Lewis, S. A., Alles, W., and Wade, J. B., 1982, Evaluation by capacitance measurements of antidiuretic hormone induced membrane area changes in toad bladder, Biochim. Biophys. Acta 689:267–274.PubMedCrossRefGoogle Scholar
  49. Suzuki, K., Kottra, G., Kampmann, L., and Frömter, E., 1982, Square wave pulse analysis of cellular and paracellular conductance pathways inNecturus gallbladder epithelium. Pflugers Arch 394:302–312.PubMedCrossRefGoogle Scholar
  50. Taylor, A., Mamelak, M., Reaven, E., and Maffly, R., 1973, Vasopressin: Possible role of microtubules and microfilaments in its action, Science 181:347–350.PubMedCrossRefGoogle Scholar
  51. Trautmann, A., and Siegelbaum, S. D., 1983, The influence of membrane isolation on single acetylcholine-channel current in rat myotubes, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.). Plenum Press, New York, pp. 473–480.Google Scholar
  52. Van Driessche, W., and Erlij, D., 1983, Noise analysis of inward and outward Na+ currents across the apical border of ouabain-treated frog skin, Pflugers Arch 398:179–188.PubMedCrossRefGoogle Scholar
  53. Van Driessche, W., and Gogelein, H., 1980, Attenuation of current and voltage noise signals recorded from epithelia, J. Theor. Biol. 86:629–648.PubMedCrossRefGoogle Scholar
  54. Van Driessche, W., and Gullentops, K., 1982, Conductance fluctuation analysis in epithelia, in: Techniques in Cellular Physiology, Vol. 2 (P. F. Baker, ed.), Elsevier, Amsterdam, pp. 1–13.Google Scholar
  55. Van Driessche, W., and Lindemann, B., 1979, Concentration dependence of currents through single sodium-selective pores in frog skin, Nature 282:519–520.PubMedCrossRefGoogle Scholar
  56. Wade, J. B., Stetson, D. L., and Lewis, S. A., 1981, ADH action: Evidence for a membrane shuttle mechanism, Ann. N.Y. Acad. Sci. 372:106–117.PubMedCrossRefGoogle Scholar
  57. Warneke, J., and Lindemann, B., 1981, Effect of ADH on the capacitance of apical epithehal membranes. Adv. Physiol. Sci. 3:129–133.Google Scholar
  58. Wills, N. K., 1984, Mechanisms of ion transport by the mammalian colon revealed by frequency domain analysis techniques, in: Current Topics in Membranes and Transport, Vol. 20 (J. B. Wade and S. A. Lewis, eds.). Academic Press, Orlando, FL, pp. 61–85.Google Scholar
  59. Wills, N. K., and Lewis, S. A., 1980, Intracellular Na+ activity as a function of Na+ transport rate across a tight epithelium, Biophys. J. 30:181–186.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Simon A. Lewis
    • 1
  • John W. Hanrahan
    • 1
  1. 1.Department of PhysiologyYale Medical SchoolNew HavenUSA

Personalised recommendations