Analysis of Epithelial Cell Surface Polarity Development with Monoclonal Antibodies

  • George K. Ojakian
Part of the New Horizons in Therapeutics book series (NHTH)


The cells of transporting epithelia are organized into either sheets or tubules so that they provide a barrier between two compartments, the mucosal and serosal, which are essential for the proper physiological functioning of a variety of organs and tissues. The plasma membrane of epithelial cells is divided into two unique domains: the apical membrane, which borders the mucosal or luminal side, and the basolateral membrane, which contacts the basal lamina on the serosal side of the epithelium (Berridge and Oschman, 1972). At the boundary between the apical and basolateral domains is a differentiated region of the plasma membrane termed the junctional complex (Farquhar and Palade, 1963), and one of these membrane specializations, the tight junction, seals the lateral space, preventing the transepithelial movement of ions and larger molecules (Farquhar and Palade, 1963; Staehelin, 1974).


Tight Junction MDCK Cell Basolateral Membrane Apical Plasma Membrane Distal Convoluted Tubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berridge, M. J., and Oschman, J. L., 1972, Transporting Epithelia, Academic Press, New York.Google Scholar
  2. Blobel, G., Walter, P., Chung, C. N., Goldman, B. M., Erickson, A. H., and Lingappa, V. R., 1979, Translocation of proteins across membranes: The signal hypothesis and beyond, Symp. Soc. Exp, Biol. 33:9–36.Google Scholar
  3. Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A., and Sabatini, D. D., 1978, Polarized monolayers formed by epithelial cells on a permeable and translucent support, J. Cell Biol. 77:853–880.PubMedCrossRefGoogle Scholar
  4. Cereijido, M., Ehrenfeld, J., Meza, I., and Martinez-Palomo, A., 1980, Structural and functional membrane polarity in cultured monolayers of MDCK cells, J. Membr. Biol. 52:147–159.PubMedCrossRefGoogle Scholar
  5. Cramer, E. B., Milks, L. C., and Ojakian, G. K., 1980, Transepithelial migration of human neutrophils: An in vitro model system, Proc. Natl. Acad. Sci. U.S.A. 77:4069–4073.PubMedCrossRefGoogle Scholar
  6. Ernst, S. A., and Mills, J. W., 1977, Basolateral plasma membrane locaHzation of ouabain-sensitive sodium transport sites in the secretory epithelium of the avian salt gland, J. Cell. Biol. 75:74–94.PubMedCrossRefGoogle Scholar
  7. Farquhar, M. G., and Palade, G. E., 1963, Junctional complexes in various epithelia, J. Cell Biol. 17:375–412.PubMedCrossRefGoogle Scholar
  8. Fujita, M., Kawai, K., Asano, K., and Nakao, M., 1973, Protein components of two different regions of an intestinal epithelial cell membrane, Biochim. Biophys. Acta 307:141–151.PubMedCrossRefGoogle Scholar
  9. Gefter, M. L., Margulies, D. H., and Scharff, M. D., 1977, A simple method for polyethylene glycol-promoted hybridization of mouse myeloma cells, Somat. Cell Genet. 3:231–236.PubMedCrossRefGoogle Scholar
  10. Handler, J. S., Perkins, F. M., and Johnson, J. P., 1980, Studies of renal cell function using cell culture techniques. Am. J. Physiol. 238:F1-F9.PubMedGoogle Scholar
  11. Herzlinger, D. A., and Ojakian, G. K., 1984, Studies on the development and maintenance of epithehal cell surface polarity with monoclonal antibodies, J. Cell Biol. 98:1777–1787.PubMedCrossRefGoogle Scholar
  12. Herzlinger, D. A., Easton, T. G., and Ojakian, G. K., 1982, The MDCK epithelial cell line expresses a cell surface antigen of the kidney distal tubule, J. Cell Biol. 93:269–277.PubMedCrossRefGoogle Scholar
  13. Hoisang, U., Saier, M. H., Jr., and Ellisman, M. H., 1979, Tight junction formation is closely linked to the polar redistribution of intramembranous particles in aggregating MDCK epithelia, Exp. Cell Res. 122:384–391.CrossRefGoogle Scholar
  14. Kawai, K., Fujita, M., and Nakao, M., 1974, Lipid components of two different regions of an intestinal epithelial cell membrane of mouse, Biochim. Biophys. Acta 369:222–233.PubMedGoogle Scholar
  15. Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497.PubMedCrossRefGoogle Scholar
  16. Kyte, J., 1976, Immunoferritin determination of the distribution of (Na+ + K+) ATPase over the plasma membranes of renal convoluted tubules. I. Distal segment, J. Cell Biol. 68:287–303.PubMedCrossRefGoogle Scholar
  17. Lamb, J. F., Ogden, P., and Simmons, N. L., 1981, Autoradiographic localization of [3H]ouabain bound to cultured epithelial cell monolayers of MDCK cells, Biochim. Biophys. Acta 644:333–340.PubMedCrossRefGoogle Scholar
  18. Langone, J. J., 1982, Use of labeled protein A in quantitative immunochemical analysis of antigens and antibodies, J. Immunol. Methods 51:3–22.PubMedCrossRefGoogle Scholar
  19. Leighton, J., Estes, L. W., Mansukhani, S., and Brada, Z., 1970, A cell line derived from dog kidney (MDCK) exhibiting qualities of papillary adenocarcinoma and of renal tubular epithelium, Cancer 26:1022–1028.PubMedCrossRefGoogle Scholar
  20. Louvard, D., 1980, Apical membrane aminopeptidase appears at sites of cell-cell contact in cultured kidney epithelial cells, Proc. Natl. Acad. Sci. U.S.A. 77:4132–4136.PubMedCrossRefGoogle Scholar
  21. Matlin, K., and Simons, K., 1984, Sorting of an apical plasma membrane glycoprotein occurs before it reaches the cell surface in cultured epithelial cells, J. Cell Biol. 99:2131–2139.PubMedCrossRefGoogle Scholar
  22. Matlin, K. S., Bainton, D. F., Personen, M., Louvard, D., Gentry, N., and Simons, K., 1983, Transepithelial transport of a viral membrane glycoprotein implanted into the apical plasma membrane of Madin-Darby canine kidney cells. I. Morphological evidence, J. Cell Biol. 97:627–637.PubMedCrossRefGoogle Scholar
  23. Meldolesi, J., Castiglioni, G., Parma, R., Nassivera, N., and DeCamilli, P., 1978, dependent disassembly and reassembly of occluding junctions in guinea pig pancreatic acinar cells: Effect of drugs, J. Cell Biol. 79:156–172.PubMedCrossRefGoogle Scholar
  24. Misfeldt, D. S., Hamamoto, S. T., and Pitelka, D. R., 1976, Transepithelial transport in cell culture, Proc. Nat. Acad. Sci. U.S.A. 73:1212–1216.CrossRefGoogle Scholar
  25. Morel, F., 1981, Sites of hormone action in the mammalian nephron. Am. J. Physiol. 240:F159-F164.PubMedGoogle Scholar
  26. Mühlpfordt, H., 1982, The preparation of colloidal gold particles using tannic acid as an additional reducing agent, Experientia 38:1127–1128.CrossRefGoogle Scholar
  27. Murer, H., and Kinne, R., 1980, The use of isolated membrane vesicles to study epithelial transport processes, J. Membr. Biol. 55:81–95.PubMedCrossRefGoogle Scholar
  28. Ojakian, G. K., 1981, Tumor promoter-induced changes in the permeability of epithelial cell tight junctions. Cell 23:95–103.PubMedCrossRefGoogle Scholar
  29. Ojakian, G. K., and Herzlinger, D. A., 1984, Analysis of epithelial cell surface polarity with monoclonal antibodies. Fed. Proc. 43:2208–2216.PubMedGoogle Scholar
  30. Personen, M., and Simons, K., 1983, Transepithelial transport of a viral membrane glycoprotein implanted into the apical plasma membrane of Madin-Darby canine kidney cells. II. Immunological evidence, J. Cell Biol. 97:638–643.CrossRefGoogle Scholar
  31. Pisam, M., and Ripoche, P., 1976, Redistribution of surface macromolecules in dissociated epithelial cells, J. Cell Biol. 71:907–920.PubMedCrossRefGoogle Scholar
  32. Rabito, C. A., and Tchao, R., 1980, [3H]ouabain binding during the monolayer organization and cell cycle in MDCK cells, Am. J. Physiol. 238:C43-C48.PubMedGoogle Scholar
  33. Rabito, C. A., Tchao, T., Valentich, J., and Leighton, J., 1978, Distribution and characteristics of the occluding junctions in a monolayer of a cell line (MDCK) derived from canine kidney, J. Membr. Biol. 43:351–365.PubMedCrossRefGoogle Scholar
  34. Rabito, C. A. Kreisberg, J. I., and Wight, D., 1984, Alkaline phosphatase and γ-glutamyl transpeptidase as polarization markers during the organization of LLC-PK1 cells into an epithelial membrane, J. Biol. Chem. 259:574–582.PubMedGoogle Scholar
  35. Reggio, H., Courdrier, E., and Louvard, D., 1982, Surface and cytoplasmic domains in polarized epithelial cells, in: Progress in Clinical and Biological Research Vol. 91 (J. F. Hoffman, G. H. Giebisch, L. Doris, eds.) Alan R. Liss, New York, pp. 89–105.Google Scholar
  36. Richardson, J. C., and Simmons, N. L., 1979, Demonstration of protein asymmetries in the plasma membrane of cultured renal (MDCK) epithelial cells by lactoperoxidase-mediated iodination, FEBS Lett. 105:201–204.PubMedCrossRefGoogle Scholar
  37. Richardson, J. C. W., Scalera, V., and Simmons, N. L., 1981, Identification of two strains of MDCK cells which resemble separate nephron tubule segments, Biochim. Biophys. Acta 673:26–36.PubMedCrossRefGoogle Scholar
  38. Rindler, M. J., Chuman, L. M., Shaffer, L., and Saier, M. H., Jr., 1979, Retention of differentiated properties in an established dog kidney epithelial cell line (MDCK), J. Cell Biol. 81:635–648.PubMedCrossRefGoogle Scholar
  39. Rindler, M. J., Ivanov, I. E., Rodriguez-Boulan, E., and Sabatini, D. D., 1982, Biogenesis of epithelial cell plasma membranes, Ciba Found. Symp. 92:184–208.PubMedGoogle Scholar
  40. Rindler, M. J., Ivanov, I. E., Plesken, H., and Sabatini, D. D., 1985, Polarized delivery of viral glycoproteins to the apical and basolateral plasma membrane of Madin-Darby canine kidney cells infected with temperature-sensitive viruses, J. Cell Biol. 100:136–151.PubMedCrossRefGoogle Scholar
  41. Rodewald, R., 1980, Distribution of immunoglobulin G receptors in the small intestine of the young rat, J. Cell Biol. 85:18–32.PubMedCrossRefGoogle Scholar
  42. Rodriguez-Boulan, E., 1983, Membrane biogenesis, enveloped RNA viruses, and epithelial polarity, in:Modern Cell Biology, Vol. 1 (B. Satir, ed.) Alan R. Liss, New York, pp. 119–170.Google Scholar
  43. Rodriguez-Boulan, E., and Pendergast, M., 1980, Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell 20:45–54.PubMedCrossRefGoogle Scholar
  44. Rodriguez-Boulan, E., and Sabatini, D. D., 1978, Asymmetric budding of viruses in epithelial monolayers: A model system for study of epithelial polarity, Proc. Natl. Acad. Sci. U.S.A. 75:5071–5075.PubMedCrossRefGoogle Scholar
  45. Rodriguez-Boulan, E., Paskiet, K. T., Salas, P. J. I., and Bard, E., 1984, Intracellular transport of influenza virus hemagglutinin to the apical surface of Madin-Darby canine kidney cells, J. Cell Biol. 98:308–319.PubMedCrossRefGoogle Scholar
  46. Roth, M. G., Compans, R. W., Giusti, L., Davis, A. R., Nayak, D. P., Gething, M. J., and Sambrook, J., 1983, Influenza virus hemagglutinin expression is polarized in cells infected with recombinant SV40 viruses carrying cloned hemagglutinin DNA, Cell 33:435–443.PubMedCrossRefGoogle Scholar
  47. Semenza, G., 1979, Small intestinal disaccharidases: Their properties and role as sugar translocators across natural and artificial membranes, in: The Enzymes of Biological Membranes, Vol. 3 (A. Martonosi, ed.), Plenum Press, New York, pp. 349–382.Google Scholar
  48. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720–731.PubMedCrossRefGoogle Scholar
  49. Sisson, S. P., and Vernier, R. L., 1980, Methods for immunoelectron microscopy: Localization of antigens in rat kidney, J. Histochem. Cytoehem. 28:441–452.CrossRefGoogle Scholar
  50. Solari, R., and Kraehenbuhl, J.-P., 1984, Biosynthesis of the IgA antibody receptor: A model for the transepithehal sorting of a membrane glycoprotein. Cell 36:61–71.PubMedCrossRefGoogle Scholar
  51. Staehelin, L. A., 1974, Structure and function of intercellular junctions, Int. Rev. Cytol. 39:191–283.PubMedCrossRefGoogle Scholar
  52. Valentich, J. D., 1981, Morphological similarities between the dog kidney cell line MDCK and the mammalian cortical collecting tubule, Ann. N.Y. Acad. Sci. 372:384–405.PubMedCrossRefGoogle Scholar
  53. Van Meer, G., and Simons, K., 1982, Viruses budding from either the apical or the baso-lateral plasma membrane domain of MDCK cell have unique phospholipid compositions, EMBOJ. 1:847–852.Google Scholar
  54. Ziomek, C. A., Schulman, S., and Edidin, M., 1980, Redistribution of membrane proteins in isolated mouse intestinal epithelial cells, J. Cell Biol. 86:849–857.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • George K. Ojakian
    • 1
  1. 1.Department of Anatomy and Cell BiologyState University of New York, Downstate Medical CenterBrooklynUSA

Personalised recommendations