Intracellular Protein Topogenesis

  • Günter Blobel
  • Peter Walter
  • Reid Gilmore
Part of the New Horizons in Therapeutics book series (NHTH)


A cell contains millions of protein molecules, which are continually being synthesized and degraded. At homeostasis, a given species of protein is represented by a characteristic number of molecules that is kept constant within a narrow range. Very little is known about the accounting procedures of the cell, i.e., how it balances and controls biosynthesis and biodegradation.


Integral Membrane Protein Protein Translocation Microsomal Membrane Signal Recognition Particle Translocation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. J., Walter, P., and Blobel, G., 1982, Signal recognition protein is required for the integration of acetylcholine receptor δ subunit, a transmembrane glycoprotein, into the endoplasmic reticulum membrane, J. Cell Biol. 93:501–506.PubMedCrossRefGoogle Scholar
  2. Anderson, D. J., Mostov, K. E., and Blobel, G., 1983, Mechanisms of integration for de novo synthesized polypeptides into membranes. Signal recognition particle is required for the integration into microsomal membranes of calcium ATPase and of lens MP26 but not of cytochrome b5,Proc, Natl. Acad. Sci. U.S.A. 80:7249–7253.CrossRefGoogle Scholar
  3. Bielinska, M., Rogers, G., Rucinsky, T., and Boime, I., 1979, Processingin vitro of placental polypeptide hormones by smooth microsomes, Proc. Natl. Acad. Sci. U.S.A. 76:6152–6156.PubMedCrossRefGoogle Scholar
  4. Blobel, G., 1979, Extralysosomal compartments for the turnover of intracellular macro-molecules, in:Limited Proteolysis in Microorganisms (G. N. Cohen, H. Holzer, eds.), U.S. Department of Health, Education and Welfare, Washington, pp. 167–169.Google Scholar
  5. Blobel, G., 1980, Intracellular protein topogenesis, Proc. Natl. Acad. Sci. U.S.A. 77:1496–1500.PubMedCrossRefGoogle Scholar
  6. Blobel, G., and Dobberstein, B., 1975a, Transfer of proteins across membranes I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma, J. Cell Biol. 67:835–851.PubMedCrossRefGoogle Scholar
  7. Blobel, G., and Dobberstein, B., 1975b, Transfer of proteins across membranes II. Reconstitution of functional rough microsomes from heterologous components, J. Cell Biol. 67:852–862.PubMedCrossRefGoogle Scholar
  8. Erickson, A. H., Conner, G. E., and Blobel, G., 1981, Biosynthesis of a lysosomal enzyme. Partial structure of two transient and functionally distinct NHa-terminal sequences in cathepsin D, J. Biol. Chem. 256:11224–11231.PubMedGoogle Scholar
  9. Erickson, A. H., Walter, P., and Blobel, G., 1983, Translocation of a lysosomal enzyme across the microsomal membrane requires signal recognition particle, Biochem. Biophys. Res. Commun. 115:275–280.PubMedCrossRefGoogle Scholar
  10. Gilmore, R., and Blobel, G., 1983, Transient involvement of signal recognition particle and its receptor in the microsomal membrane prior to protein translocation. Cell 35:677–685.PubMedCrossRefGoogle Scholar
  11. Gilmore, R., Walter, P., and Blobel, G., 1982, Protein translocation across the endoplasmic reticulum II. Isolation and characterization of the signal recognition particle receptor, J. Cell Biol. 95:470–477.PubMedCrossRefGoogle Scholar
  12. Hortin, G., and Boime, I., 1980, Inhibition of preprotein processing in ascites tumor lysates by incorporation of a leucine analogue, Proc. Natl. Acad. Sci. U.S.A. 77:1356–1360.PubMedCrossRefGoogle Scholar
  13. Kreibich, G., Ulrich, B. L., and Sabatini, D. D., 1978, Proteins of rough microsomal membranes related to ribosome binding I. Identification of ribophorins I and II, membrane proteins characteristic of rough microsomes, J. Cell Biol. 77:464–487.PubMedCrossRefGoogle Scholar
  14. Lingappa, V. R., Katz, F. N., Lodish, H. F., and Blobel, G., 1978, A signalsequence for the insertion of a transmembrane glycoprotein. Similarities to the signals of secretory proteins in primary structure and function, J. Biol. Chem. 253:8667–8670.PubMedGoogle Scholar
  15. Marcantonio, E. E., Grebenau, R. C., Sabatini, D. D., and Kreibich, G., 1982, Identification of ribophorins in rough microsomal membranes from different organs of several species, Eur. J. Biochem. 124:217–222.PubMedCrossRefGoogle Scholar
  16. Meyer, D. I., and Dobberstein, B., 1980a, A membrane component essential for vectorial translocation of nascent proteins across the endoplasmic reticulum: Requirements for its extraction and reassociation with the membrane, J. Cell Biol. 87:498–502.PubMedCrossRefGoogle Scholar
  17. Meyer, D. I., and Dobberstein, B., 1980b, Identification and characterization of a membrane component essential for the translocation of nascent secretory proteins across the membrane of the endoplasmic reticulum, J. Cell Biol. 87:503–508.PubMedCrossRefGoogle Scholar
  18. Meyer, D. I., Krause, E., and Dobberstein, B., 1982, Secretory protein translocation across membranes—the role of the ’docking protein,’ Nature 297:647–650.PubMedCrossRefGoogle Scholar
  19. Mueller, M., Ibrahimi, I., Chang, C. N., Walter, P., and Blobel, G., 1982, A bacterial secretory protein requires signal recognition particle for translocation across mammalian endoplasmic reticulum, J. Biol. Chem. 257:11860–11863.Google Scholar
  20. Palade, G., 1975, Intracellular aspects of the process of protein secretion. Science 189:347–358.PubMedCrossRefGoogle Scholar
  21. Stoffel, W., Blobel, G., and Walter, P., 1981, Synthesisin vitro and translocation of apoliprotein AI across microsomal vesicles, Eur. J. Biochem. 120:519–522.PubMedCrossRefGoogle Scholar
  22. Walter, P., and Blobel, G., 1980, Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum, Proc. Natl. Acad. Sci. U.S.A. 77:7112–7116.PubMedCrossRefGoogle Scholar
  23. Walter, P., and Blobel, G., 1981, Translocation of proteins across the endoplasmic reticulum. III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes, J. Cell Biol. 91:557–561.PubMedCrossRefGoogle Scholar
  24. Walter, P., and Blobel, G., 1982, Signal recognition particle contains a 7 S RNA essential for protein translocation across the endoplasmic reticulum. Nature 299:691–698.PubMedCrossRefGoogle Scholar
  25. Walter, P., and Blobel, G., 1983a, Disassembly and constitution of signal recognition particle, Cell 34:525–533.PubMedCrossRefGoogle Scholar
  26. Walter, P., and Blobel, G., 1983b, Subcellular distribution of signal recognition particle and 7SL-RNA determined with polypeptide-specific antibodies and complementary DNA probe, J. Cell Biol. 97:1693–1699.PubMedCrossRefGoogle Scholar
  27. Walter, P., Jackson, R. C., Marcus, M. M., Lingappa, V. R., and Blobel, G., 1979, Tryptic dissection and reconstitution of translocation activity for nascent presecretory proteins across microsomal membranes, Proc. Natl. Acad. Sci. U.S.A. 76:1795–1799.PubMedCrossRefGoogle Scholar
  28. Walter, P., Ibrahimi, I., and Blobel, G., 1981, Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein, J. Cell Biol. 91:545–550.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Günter Blobel
    • 1
  • Peter Walter
    • 1
  • Reid Gilmore
    • 1
  1. 1.Laboratory of Cell BiologyThe Rockefeller UniversityNew YorkUSA

Personalised recommendations