Advertisement

Hormone-Induced Inositol Lipid Breakdown and Calcium-Mediated Cellular Responses in Liver

  • John R. Williamson
  • Suresh K. Joseph
  • Kathleen E. Coll
  • Andrew P. Thomas
  • Arthur Verhoeven
  • Marc Prentki
Part of the New Horizons in Therapeutics book series (NHTH)

Abstract

Although it has been recognized for many years that changes of the intracellular free Ca2+ concentration by a variety of agonists form an important signaling device for regulation of cell function, the source of the Ca2+ and the molecular events regulating receptor-mediated changes of cellular calcium homeostasis have remained recalcitrant problems despite much effort directed towards their elucidation. However, advances made along a number of different lines have contributed towards the rapid increase of knowledge in this area. These include on the one hand the development of fluorescent Ca2+ indicators such as Quin 2 (Tsien, 1983) and more recently Fura 2 (Grynkiewicz et al., 1985), which allow kinetic measurements of changes in the cytosolic free Ca2+ concentration of isolated cells, and on the other hand the elucidation of the signaling roles of two new intracellular second messengers, namely, inositol trisphosphate and diacylglycerol (for reviews see Nishizuka et al., 1984; Nishizuka, 1984a; Berridge and Irvine, 1984; Williamson et al., 1985; Williamson, 1986).

Keywords

Phorbol Ester Inositol Trisphosphate Insulinoma Cell Calcium Pool Vasopressin Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Latif, A. A., and Akhtar, R. A., 1982, Cations and the acetylcholine-stimulated 32P-labeling of phosphoinositides in the rabbit iris, in: Phospholipids in the Nervous System, Vol. 1 (L. Horrocker, ed.), Raven Press, New York, pp. 251–264.Google Scholar
  2. Assimacopoulos-Jeannet, F., McCormack, J. G., and Jeanrenaud, B., 1983, Effect of phenylephrine on pyruvate dehydrogenase activity in rat hepatocytes and its interaction with insulin and glucagon, FEBS Lett. 159:83–88.PubMedCrossRefGoogle Scholar
  3. Baraban, J. M., Gould, R. J., Peroutka, S. J., and Snyder, S. H., 1985, Phorbol ester effects on neurotransmission: Interaction with neurotransmitters and calcium in smooth muscle, Proc. Natl. Acad. Sci. U.S.A. 82:604–607.PubMedCrossRefGoogle Scholar
  4. Batty, I. R., Nahorski, S. R., and Irvine, R. F., 1985, Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices, Biochem. J. 323:211–215.Google Scholar
  5. Baukal, A. J., Guillemette, G., Rubin, R., Spat, A., and Catt, K. J., 1985, Binding sites for inositol trisphosphate in the bovine adrenal cortex, Biochem. Biophys. Res. Commun. 133:532–538.PubMedCrossRefGoogle Scholar
  6. Berridge, M. J., 1983, Rapid accumulation of inositol trisphosphate reveals that agonists hydrolase polyphosphoinsitides instead of phosphatidyl inositol, Biochem. J. 212:849–858.PubMedGoogle Scholar
  7. Berridge, M. J., 1984, Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J. 220:345–360.PubMedGoogle Scholar
  8. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321.PubMedCrossRefGoogle Scholar
  9. Besterman, J. M., and Cuatrecasas, P., 1984, Phorbol esters rapidly stimulate amiloride-sensitive Na+/H+ exchange in a human leukemia cell line, J. Cell Biol. 99:340–343.PubMedCrossRefGoogle Scholar
  10. Blackmore, P. F., Hughes, B. P., Shuman, E. A., and Exton, J. H., 1982, a-Adrenergic activation of Phosphorylase in Hver cells involves mobilization of intracellular calcium without influx of extracellular calcium, J. Biol. Chem. 257:190–197.Google Scholar
  11. Blackmore, P. F., Hughes, B. P., Charest, R., Shuman, E. A., and Exton, J. H., 1983, Time course of a-adrenergic and vasopressin actions on Phosphorylase activation, calcium efflux, pyridine nucleotide reduction and respiration in hepatocytes, 7. Biol. Chem. 258:10488–10494.Google Scholar
  12. Brown, J. E., Rubin, L. J., Ghalayini, A. J., Tarver, A. P., Irvine, R. F., Berridge, M. J., and Anderson, R. E., 1984, Myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature 311:160–163.PubMedCrossRefGoogle Scholar
  13. Burgess, G. M., Godfrey, P. P., McKinney, J. S., Berridge, M. J., Irvine, R. F., and Putney, J. W., Jr., 1984, The second messenger Unking receptor activation to internal Ca2+ release in liver. Nature 309:63–66.PubMedCrossRefGoogle Scholar
  14. Burgess, G. M., McKinney, J. S., Irvine, R. F., and Putney, J. W., 1985, Inositol-1,4,5-trisphosphate and inositol 1,3,4-trisphosphate formation in Ca2+ mobilizing hormone-activated cells, Biochem. J. 323:237–248.Google Scholar
  15. Bums, C. P., and Rozengurt, E., 1983, Serum, platelet-derived growth factor vasopressin and phorbol esters increase intracellular pH in Swiss 3T3 cells, Biochem. Biophys. Res. Commun. 116:931–938.CrossRefGoogle Scholar
  16. Busa, W. B., Ferguson, J. E., Joseph, S. K., Williamson, J. R., and Nuccittelli, R., 1985, Activation of frog (Xenopus laevis) eggs by inositol trisphosphate. I. Characterization of Ca2+ release from intracellular stores, J. Cell. Biol. 101:677–682.PubMedCrossRefGoogle Scholar
  17. Castagna, M. Y., Takai, K., Kaibuchi, K., Sano, K., Kikkawa, J., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257:7847–7851.PubMedGoogle Scholar
  18. Choquette, D., Hakim, G., Filoteo, A. G., Plishker, G. A., Bostwick, J. R., and Penniston, J. T., 1984, Regulation of plasma membrane Ca2+ ATPases by lipids of the phospha-tidylinositol cycle, Biochem. Biophys, Res. Commun. 125:908–915.CrossRefGoogle Scholar
  19. Coll, K. E., Joseph, S. K., Corkey, B. E., and Williamson, J. R., 1982, Determination of the matrix free Ca2+ concentration and kinetics of Ca2+ efflux in liver and heart mitochondria, J. Biol. Chem. 257:8696–8704.PubMedGoogle Scholar
  20. Cooper, R. H., Coll, K. E., and Williamson, J. R., 1985, Differential effects of phorbol ester on phenylephrine and vasopressin-induced Ca2+ mobilization in isolated hepatocytes, J. Biol. Chem. 260:3281–3288.PubMedGoogle Scholar
  21. Creba, J. A., Downes, C. P., Hawkins, P. T., Brewster, G., Michell, R. H., and Kirk, C. J., 1983, Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones, Biochem. J. 212:733–747.PubMedGoogle Scholar
  22. De Chaffoy de Courcelles, D., Roevens, P., and van Belle, H., 1984, 12-0-Tetradecanoyl-phorbol 13-acetate stimulates inositol Hpid phosphorylation in intact human platelets, FEBS Lett. 173:389–393.Google Scholar
  23. Denton, R. M., and McCormack, J. G., 1985, Ca2+ transport by mammalian mitochondria and its role in hormone action. Am. J. Physiol. 249:E543-E554.PubMedGoogle Scholar
  24. Drust, D. S., and Martin, T. F. J., 1984, Thyrotropin-releasing hormone rapidly activates protein phosphorylation in GH3 pituitary cells by a lipid-linked protein kinase C-mediated pathway, J. Biol. Chem. 259:14520–14530.PubMedGoogle Scholar
  25. Fein, A., Payne, R., Corson, D. W., Berridge, M. J., and Irvine, R. F., 1984, Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate, Nature 311:157–160.PubMedCrossRefGoogle Scholar
  26. Exton, J. H., 1980, Mechanisms involved in α-adrenergic phenomena: Role of calcium ions in actions of catecholamines in liver and other tissues, Am. J. Physiol. 238:E3-E12.PubMedGoogle Scholar
  27. Exton, J. H., 1981, Molecular mechanisms involved in a-adrenergic responses, Mol. Cell. Endocrinol. 23:233–264.PubMedCrossRefGoogle Scholar
  28. Fujita, S., Irita, K., Takeshige, K., and Minakami, S., 1984, Diacylglycerol, l-oleoyl-2-acetyl-glycerol, stimulates superoxide-generation from human neutrophils, Biochem. Biophys. Res. Commun. 120:318–324.PubMedCrossRefGoogle Scholar
  29. Garrison, J. C., Johnsen, D. E., and Campanile, C. P., 1984, Evidence for the role of Phosphorylase kinase, protein kinase C, and other Ca2+-sensitive protein kinases in the response of hepatocytes to angiotensin II and vasopressin, J. Biol. Chem. 259:3283–3292.PubMedGoogle Scholar
  30. Gilman, A. G., 1984, G proteins and dual control of adenylate cyclase, Cell 36:577–579.PubMedCrossRefGoogle Scholar
  31. Gomperts, B. D., 1983, Involvement of guanine nucleotide binding protein in the gating of Ca2+ by receptors, Nature 306:64–66.PubMedCrossRefGoogle Scholar
  32. Grynkiewicz, G., Poenie, M., and Tsien, R. Y., 1985, A new generation of indicators with greatly improved fluorescence properties, J. Biol. Chem. 260:3440–3450.PubMedGoogle Scholar
  33. Halenda, S. P., and Feinstein, M. B., 1984, Phorbol myristate acetate stimulates formation of phosphatidyl inositol 4-phosphate and phosphatidyl inositol 4,5-bisphosphate in human platelets, Biochem. Biophys. Res. Commun. 124:507–513.PubMedCrossRefGoogle Scholar
  34. Haslam, R. J., and Davidson, M. M. L., 1984, Receptor-induced diacylglycerol formation in permeabilized platelets; possible role for a GTP-binding protein, J. Receptor Res. 4:605–629.Google Scholar
  35. Hawthorne, J. N., 1983, Polyphosphoinositide metabolism in excitable membranes, Biosci. Rep. 3:887–904.PubMedCrossRefGoogle Scholar
  36. Hems, D. A., and Whitton, P. D., 1980, Control of hepatic glycogenolysis, Physiol. Rev. 60:1–50.PubMedGoogle Scholar
  37. Hems, D. A., McCormack, J. G., and Denton, R. M., 1978, Activation of pyruvate dehydrogenase in the perfused rat liver by vasopressin, Biochem. J. 176:627–629.PubMedGoogle Scholar
  38. Irvine, R. F., Anggard, E. E., Letcher, A. J., and Downes, C. P., 1985, Metabolism of inositol 1,4,5-trisphosphate in rat parotid glands, Biochem. J. 229:505–511.PubMedGoogle Scholar
  39. Irvine, R. F., Dawson, R. M. C., and Freinkel, N., 1982, Stimulated phosphatidylinositol turnover: A brief appraisal, in: Contemporary Metabolism, Vol. 2 (N. Freinkel, ed.). Plenum Press, New York, pp. 301–342.CrossRefGoogle Scholar
  40. Irvine, R. F., Letcher, A. J., Lander, D. J., and Downes, C. P., 1984, Inositol trisphosphate in carbachol-stimulated rat parotid glands, Biochem. J. 223:237–243.PubMedGoogle Scholar
  41. Joseph, S. K., and Williams, R. J., 1985, Subcellular localization and some properties of the enzymes hydrolyzing inositol polyphosphates in rat liver, FEBS Lett. 180:150–154.PubMedCrossRefGoogle Scholar
  42. Joseph, S. K., and Williamson, J. R., 1983, The origin, quantitation and kinetics of intracellular calcium mobilization by vasopressin and phenylephrine in hepatocytes, J. Biol. Chem. 258:10425–10432.PubMedGoogle Scholar
  43. Joseph, S. K., Thomas, A. P., Williams, R. J., Irvine, R. F., and Williamson, J. R., 1984a, Myo-inositol 1,4,5-trisphosphate: A second messenger for the hormonal mobilization of intracellular Ca2+ in liver, J. Biol. Chem. 259:3077–3081.PubMedGoogle Scholar
  44. Joseph, S. K., Williams, R. J., Corkey, B. E., Matschinsky, F. M., and Williamson, J. R., 1984b, The effect of inositol trisphosphate on Ca2+ fluxes in insulin-secreting tumor cells, J. Biol. Chem. 259:12952–12955.PubMedGoogle Scholar
  45. Joseph, S. K., Coll, K. E., Thomas, A. P., Rubin, R., and Williamson, J. R., 1985, The role of extracellular Ca2+ in the response of the hepatocyte to Ca2+-dependent hormones, J. Biol. Chem. 260:12508–12515.PubMedGoogle Scholar
  46. Kaibuchi, K., Takai, Y., Sawamura, M., Hoshijima, M., Fujikura, T., and Nishizuka, Y., 1983, Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation, J. Biol. Chem. 258:6701–6704.PubMedGoogle Scholar
  47. Kaibuchi, K., Takai, Y., and Nishizuka, Y., 1985, Protein kinase C and calcium ion in mitogenic response of macrophage-depleted human peripheral lymphocytes, J. Biol. Chem. 260:1366–1369.PubMedGoogle Scholar
  48. Kojima, I., Lippes, H., Kojima, K., and Rasmussen, H., 1983, Aldosterone secretion: Effect of phorbol ester and A23187, Biochem. Biophys. Res. Commun. 116:555–562.PubMedCrossRefGoogle Scholar
  49. Kraus-Friedman, N., 1984, Hormonal regulation of hepatic gluconeogenesis, Physiol. Rev. 64:170–259.Google Scholar
  50. Labarca, R., Janowsky, A., Patel, J., and Paul, S. M., 1984, Phorbol esters inhibit agonist induced [3H]-inositol-l-P accumulation in rat hippocampal slices, Biochem. Biophys. Res. Commun. 123:703–709.PubMedCrossRefGoogle Scholar
  51. L’Allemain, G., Franchi, A., Cragoe, E., Jr., and Pouyssegur, J., 1984, Blockade of the Na+/H+ antiport abolishes growth factor-induced DNA synthesis in fibroblasts, J. Biol. Chem. 259:4313–4319.PubMedGoogle Scholar
  52. Lapetina, E. G., and Siegel, F. L., 1983, Shape change induced in human platelets by platelet-activation factor: Correlation with formation of phosphatidic acid and phosphorylation of a 40,000 dalton protein, J. Biol. Chem. 258:7241–7244.PubMedGoogle Scholar
  53. Lin, S.-H., Wallace, M. A., and Fain, J. N., 1983, Regulation of Ca2+-Mg2+-ATPase activity in hepatocyte plasma membranes by vasopressin and phenylephrine, Endocrinology 113:2268–2275.PubMedCrossRefGoogle Scholar
  54. Lynch, C. J., Charest, R., Bocckino, S. B., Exton, J. H., and Blackmore, P. F., 1985, Inhibition of hepatic α1-adrenergic effects and binding by phorbol myristate acetate, J. Biol. Chem. 260:2844–2851.PubMedGoogle Scholar
  55. Macara, I. G., 1985, Oncogenes, ions, and phospholipids, Am. J. Physiol. 248:C3-C11.PubMedGoogle Scholar
  56. Macara, I. G., Marinetti, G. V., and Balduzzi, P. C., 1984, Transforming protein of avian sarcoma virus UR2 is associated with phosphatidylinositol kinase activity: Possible role in tumorigenesis, Proc. Natl. Acad. Sci. U.S.A. 81:2728–2732.PubMedCrossRefGoogle Scholar
  57. Maclntyre, D. E., McNicol, A., and Drummond, A. H., 1985, Tumour-promoting phorbol esters inhibit agonist-induced phosphatidate formation and Ca2+ flux in human platelets, FEBS Lett. 180:160–164.CrossRefGoogle Scholar
  58. Mauger, J.-P., Poggioli, J., Guesdon, F., and Claret, M., 1984, Noradrenaline, vasopressin and angiotensin increases Ca2+ influx by opening a common pool of Ca2+ chhannels in isolated rat liver cells,Biochem. J. 221:121–127.PubMedGoogle Scholar
  59. McCormack, J. G., 1985, Studies on the activation of rat liver pyruvate dehydrogenase by adrenahne and glucagon, Biochem. J. 231:597–608.PubMedGoogle Scholar
  60. Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415:81–147.PubMedGoogle Scholar
  61. Michell, R. H., 1979, Inositol phospholipids in membrane function. Trends Biochem. Sci. 4:128–131.CrossRefGoogle Scholar
  62. Michell, R. H., 1982, Inositol lipid metabolism in dividing and differentiating cells. Cell Calcium 3:429–440.PubMedCrossRefGoogle Scholar
  63. Michell, R. H., Kirk, C. J., Jones, L. M., Downes, C. P., and Creba, J. A., 1981, The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: Defined characteristics and unanswered questions. Trans. R. Soc. Lond. [Biol.] 296:123–137.CrossRefGoogle Scholar
  64. Millard, R. W., Grupp, G., Grupp, T. L., Disalvo, J., DePover, A., and Schwartz, A., 1983, Chronotropic, inotropic, and vasodilator actions of diltiazem, nifedipine, and verapamil, Circ. Res. 52(Suppl. I):I29-I39.PubMedGoogle Scholar
  65. Moolenaar, W. H., Tertoolen, L. G. J., and deLaat, S. W., 1984a, Growth factors immediately raise cytoplasmic free Ca2+ in human fibroblasts, J. Biol. Chem. 259:8066–8069.PubMedGoogle Scholar
  66. Moolenaar, W. H., Tertoolen, L. G. J., and deLaat, S. W., 1984b, Phorbol esters and diacylglycerol mimic growth factors in raising cytoplasmic pH, Nature 312:371–374.PubMedCrossRefGoogle Scholar
  67. Movsesian, M. A., Thomas, A. P., Selak, M., and Williamson, J. R., 1985, Inositol tris-phosphate does not release Ca2+ from permeabilized myocytes and cardiac sarcoplasmic reticulum, FEBS Lett. 185:328–332.PubMedCrossRefGoogle Scholar
  68. Naccache, P. H., Molski, T. F. P., Borgeat, P., White, J. R., and Sha’afi, R. I., 1985, Phorbol esters inhibit FMet-Leu-Phe and leukotriene B4 stimulated calcium mobilization and enzyme secretion in rabbit neutrophils, J. Biol. Chem. 260:2125–2131.PubMedGoogle Scholar
  69. Nicchitta, C. V., and Williamson, J. R., 1984, Spermine: A regulator of mitochondrial calcium cycling, J. Biol. Chem. 259:12978–12983.PubMedGoogle Scholar
  70. Nishizuka, Y., 1984a, Protein kinases in signal transduction. Trends Biochem. Sci. 9:163–166.CrossRefGoogle Scholar
  71. Nishizuka, Y., 1984b, The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308:693–698.PubMedCrossRefGoogle Scholar
  72. Nishizuka, Y., Takai, Y., Kishimoto, U. K., and Kaibuchi, K., 1984, Phospholipid turnover in hormone action, Recent Prog. Horm. Res. 40:301–341.PubMedGoogle Scholar
  73. Orellana, S. A., Solski, P. A., and Brown, S. H., 1985, Phorbol ester inhibits phosphoinositide hydrolysis and calcium mobilization in cultured astrocytoma cells, J. Biol. Chem. 260:5236–5239.PubMedGoogle Scholar
  74. Oron, Y., Dascal, N., Nadler, E., and Lupu, M., 1985, Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes. Nature 313:141–143.PubMedCrossRefGoogle Scholar
  75. Pilkis, S. J., Park, C. R., and Claus, T. H., 1978, Hormonal control of hepatic gluconeo-genesis, Vitam. Horm. 36:383–460.PubMedCrossRefGoogle Scholar
  76. Prentki, M., Biden, T. J., Janjic, D., Irvine, R. F., Berridge, M. J., and Wollheim, C. B., 1984, Rapid mobilization of Ca2+ from rat insulinoma microsomes in inositol-1,4,5-trisphosphate, Nature 309:562–564.PubMedCrossRefGoogle Scholar
  77. Prentki, M., Corkey, B. E., and Matschinsky, F. M., 1985, Inositol 1,4,5-trisphosphate and the endoplasmic reticulum Ca2+ cycle of a rat insulinoma cell line, J. Biol. Chem. 260:9185–9190.PubMedGoogle Scholar
  78. Prpic, v., Green, K. C., Blackmore, P. F., and Exton, J. H., 1984, Vasopressin, angiotensin II and α1-adrenergic-induced inhibition of Ca2+ transport by rat liver plasma membrane vesicles, 7. Biol. Chem. 250:1382–1385.Google Scholar
  79. Putney, J. W., Jr., McKinney, J. S., Aub, D. L., and Leslie, B. A., 1984, Phorbol ester-induced protein secretion in rat parotid gland: Relationship to the role of inositol lipid breakdown and protein kinase C activation in stimulus-secretion coupling, Mol. Pharmacol. 26:261–266.PubMedGoogle Scholar
  80. Rasmussen, H., and Barritt, P. Q., 1984, Calcium messenger system: An integrated view, Physiol. Rev. 64:938–984.PubMedGoogle Scholar
  81. Reinhart, P. H., Taylor, W. M., and Bygrave, F. L., 1982, Calcium ion fluxes induced by the action of a-adrenergic agonists in perfused rat liver, Biochem. J. 208:619–630.PubMedGoogle Scholar
  82. Reinhart, P. H., Taylor, W. M., and Bygrave, F. L., 1984a, The role of calcium ions in the mechanism of action of a-adrenergic agonists in rat liver, Biochem. J. 223:1–13.PubMedGoogle Scholar
  83. Reinhart, P. H., Taylor, W. M., and Bygrave, F. L., 1984b, The contribution of both extracellular and intracellular calcium to the action of a-adrenergic agonists in perfused rat liver, Biochem. J. 220:35–42.PubMedGoogle Scholar
  84. Reinhart, P. H., Taylor, W. M., and Bygrave, F. L., 1984c, The action of a-adrenergic agonists on plasma membrane calcium fluxes in perfused rat liver, Biochem. J. 220:43–50.PubMedGoogle Scholar
  85. Reuter, H., 1983, Calcium channel modulation by neurotransmitters, enzymes, and drugs, Nature 301:569–574.PubMedCrossRefGoogle Scholar
  86. Rink, T. J., Sanchez, A., and Hallam, T. J., 1983, Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature 305:317–319.PubMedCrossRefGoogle Scholar
  87. Rosoff, P. M., Stein, L. F., and Cantley, L. C., 1984, Phorbol esters induce differentiation in a pre-B-lymphocyte cell line by enhancing Na+/H+ exchange, J. Biol. Chem. 259:7056–7060.PubMedGoogle Scholar
  88. Schwartz, A., Grupp, G., Millard, R. W., Grupp, I. L., Lathrop, D. A., Matlib, M. A., Vaghy, P., and Valle, J. R., 1981, Calcium-channel blockers: Possible mechanisms of protective effects on the ischemic myocardium, in:New Perspectives on Calcium Antagonists (G. D. Weiss, ed.), Waverly Press, Baltimore, pp. 191–210.Google Scholar
  89. Seyfred, M. A., Farrell, L. E., and Wells, W. W., 1984, Characterization of D-myo-inositol 1,4,5-trisphosphate phosphatase in rat liver plasma membranes, J. Biol. Chem. 259:13204–13208.PubMedGoogle Scholar
  90. Shears, S. B., and Kirk, C. J., 1984, Determination of mitochondrial calcium content in hepatocytes by a rapid cellular fractionation technique, Biochem. J. 219:383–389.PubMedGoogle Scholar
  91. Sies, H., Graf, P., and Crane, D., 1983, Decreased flux through pyruvate dehydrogenase during calcium ion movements induced by vasopressin, α-adrenergic agonists, and the ionophore A23187 in perfused rat liver, Biochem. J. 212:271–278.PubMedGoogle Scholar
  92. Storey, D. J., Shears, S. B., Kirk, C. J. and Michell, R. H., 1984, Stepwise enzymatic dephosphorylation of inositol 1,4,5-trisphosphate to inositol in liver, Nature 312:374–376.PubMedCrossRefGoogle Scholar
  93. Streb, H., Irvine, R. F., Berridge, M. J., and Schulz, I., 1983, Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol 1,4,5-trisphosphate, Nature 306:67–69.PubMedCrossRefGoogle Scholar
  94. Suematsu, E., Hirata, M., Hashimoto, T., and Kuriyama, H., 1984, Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery, Biochem. Biophys. Res. Commun. 120:481–485.PubMedCrossRefGoogle Scholar
  95. Sugimoto, Y., Whitman, M., Cantley, L. C., and Erikson, R. L., 1984, Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol, Proc. Natl. Acad. Sci. U.S.A. 81:2117–2121.PubMedCrossRefGoogle Scholar
  96. Taylor, M. V., Metcalfe, J. C., Hesketh, T. R., Smith, G. A., and Moore, J. P., 1984, Mitogens increase phosphorylation of phosphoinositides in thymocytes. Nature 312:462–465.PubMedCrossRefGoogle Scholar
  97. Thomas, A. P., Marks, J. S., Coll, K. E., and Williamson, J. R., 1983, Quantitation and early kinetics of inositol lipid changes induced by vasopressin in isolated and cultured hepatocytes, J. Biol. Chem. 258:5716–5725.PubMedGoogle Scholar
  98. Thomas, A. P., Alexander, J., and Williamson, J. R., 1984, Relationship between inositol polyphosphate production and in the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes, J. Biol. Chem. 259:5574–5584.PubMedGoogle Scholar
  99. Tsien, R. Y., 1983, Intracellular measurements of ion activities, Annu. Rev. Biophys. Bioeng. 12:91–116.PubMedCrossRefGoogle Scholar
  100. Vergara, T., Tsien, R. Y., and Delay, M., 1985, Inositol 1,4,5-trisphosphate: A possible chemical link in excitation-contraction coupling, Proc. Natl. Acad. Sci. U.S.A. 82:6352–6356.PubMedCrossRefGoogle Scholar
  101. Vincentini, L. M., DiVirgilio, F., Ambrosini, A., Pozzan, T., andMeldolesi, J., 1985, Tumor promoter phorbol 12-myristate, 13-acetate inhibits phosphoinositide hydrolysis and cytosolic Ca2+ rise induced by the activation of muscarinic receptors in PC 12 cells, Bioehem. Biophys. Res. Commun. 127:310–317.CrossRefGoogle Scholar
  102. Watson, S. P., and Lapetina, E., 1985, 1,2-Diacylglycerol and phorbol ester inhibit agonist-induced products of inositolphosphate in human platelets. Possible implications for negative feedback regulation of inositol phospholipid hydrolysis, Proc. Natl. Acad. Sci. U.S.A. 82:2623–2626.Google Scholar
  103. Williamson, J. R., 1986, Role of inositol lipid breakdown in the generation of intracellular signals, Hypertension, in press.Google Scholar
  104. Williamson, J. R., Cooper, R. H., and Hoek, J. B., 1981, Role of calcium in the hormonal regulation of liver metabolism, Bioehim. Biophys. Acta 639:243–295.Google Scholar
  105. Williamson, J. R., Cooper, R. H., Joseph, S. K., and Thomas, A. P., 1985, Inositol tris-phosphate and diacylglycerol as intracellular second messengers in liver. Am. J. Physiol. 248:C203-C216.Google Scholar
  106. Wilson, D. B., Bross, T. E., Hofmann, S. L., and Majerus, P. W., 1984, Hydrolysis of polyphosphoinositides by purified sheep seminal vesicle phospholipase C enzymes. J. Biol. Chem. 259:11718–11724.PubMedGoogle Scholar
  107. Whitaker, M., and Irvine, R. F., 1984, Inositol 1,4,5-trisphosphate microinjection activates sea urchin eggs. Nature 312:636–639.CrossRefGoogle Scholar
  108. Zawalich, W., Brown, C., and Rasmussen, H., 1983, Insulin secretion: Combined effects of phorbol ester and A23187, Bioehem. Biophys. Res. Commun. 117:448–455.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John R. Williamson
    • 1
  • Suresh K. Joseph
    • 1
  • Kathleen E. Coll
    • 1
  • Andrew P. Thomas
    • 1
  • Arthur Verhoeven
    • 1
  • Marc Prentki
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations