Agonist-Dependent Phosphoinositide Metabolism

A Bifurcating Signal Pathway
  • Michael J. Berridge
Part of the New Horizons in Therapeutics book series (NHTH)


The arrival of a chemical signal at the surface of a cell initiates a profound change in cellular activity providing it can gain access to one of the intracellular signal pathways. These signal pathways begin at the cell surface with a specific receptor, which detects the external signal and relays the information to a limited number of transducing mechanisms, which encode the message into various second messengers. A classic example of an intracellular second messenger is cAMP. Recently there has been rapid progress in the identification of two new second messengers, inositol trisphosphate and diacylglycerol, which are related to each other in that they are both derived from a common precursor, which is a unique inositol lipid located within the inner leaflet of the plasma membrane (Berridge, 1984; Berridge and Irvine, 1984; Nishizuka, 1984a,b).


Phosphatidic Acid Phorbol Ester Guanine Nucleotide Pertussis Toxin Receptor Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agranoff, B. W., Murthy, P., and Seguin, E. B., 1983, Thrombin-inducedphosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets, J. Biol. Chem. 258:2076–2078.PubMedGoogle Scholar
  2. Aloyo, V. J., Zwiers, H., and Gispen, W. H., 1983, Phosphorylation of B-50 protein by calcium-activated, phospholipid-dependent protein kinase and B-50 protein kinase, J. Neurochem. 41:649–653.PubMedCrossRefGoogle Scholar
  3. Beaven, M. A., Moore, J. P., Smith, G. A., Hesketh, T. R., and Metcalfe, J. C., 1984, The calcium signal and phosphatidyhnositol breakdown in 2H3 cells, J. Biol. Chem. 259:7137–7142.Google Scholar
  4. Berridge, M. J., 1981, Phosphatidylinositol hydrolysis: A multifunctional transducing mechanism, Mot. Cell. Endocrinol. 24:115–140.CrossRefGoogle Scholar
  5. Berridge, M. J., 1984, Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J. 220:345–360.Google Scholar
  6. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321.PubMedCrossRefGoogle Scholar
  7. Berridge, M. J., Downes, M. J., and Hanley, M. R., 1982, Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands, Biochem. J. 206:587–595.PubMedGoogle Scholar
  8. Berridge, M. J., Heslop, J. P., Irvine, R. F., and Brown, K. D., 1984, Inositol trisphosphate formation and calcium mobilization in Swiss 3T3 cells in response to platelet-derived growth factor,Biochem. J. 222:195–201.PubMedGoogle Scholar
  9. Besterman, J. M., and Cuatrecasas, P., 1984, Phorbol esters rapidly stimulate amiloride-sensitive exchange in a human leukemic cell line, J. Cell Biol. 99:340–343.PubMedCrossRefGoogle Scholar
  10. Billah, M. M., and Lapetina, E. G., 1982a, Rapid decrease of phosphatidylinositol 4,5-biphosphate in thrombin-stimulated platelets, J. Biol. Chem. 257:12705–12708.PubMedGoogle Scholar
  11. Billah, M. M., and Lapetina, E. G., 1982b, Evidence for multiple metabolic pools of phosphatidylinositol in stimulated platelets, J. Biol. Chem. 257:11856–11859.PubMedGoogle Scholar
  12. Bokoch, G. M., and Gilman, A. G., 1984, Inhibition of receptor-mediated release of arach-idonic acid by pertussis toxin. Cell 39:301–308.PubMedCrossRefGoogle Scholar
  13. Broekman, M. J., Ward, J. W., and Marcus, A. J., 1980, Phospholipid metabolism in stimulated human platelets: Changes in phosphatidylinositol, phosphatidic acid, and lyso-phospholipids, J. Clin. Invest. 66:275–283.PubMedCrossRefGoogle Scholar
  14. Burns, C. P., and Rozengurt, E., 1983, Serum, platelet-derived growth factor, vasopressin and phorbol esters increase intracellular pH in Swiss 3T3 cells, Biochem. Biophys. Res. Commun. 116:931–938.PubMedCrossRefGoogle Scholar
  15. DeChaffoy de Courcelles, D., Roevens, P., and Van Belle, H., 1984, 12-0-Tetradecanoylphorbol 13-acetate stimulates inositol lipid phosphorylation in intact human platelets, FEBS Lett. 173:389–393.Google Scholar
  16. Delbeke, D., Kojima, I. Dannies, P. S., and Rasmussen, H., 1984, Synergistic stimulation of prolactin release by phorbol ester, A23187 and forskolin, Biochem. Biophys. Res. Commun. 123:735–741.Google Scholar
  17. de Pont, J. J. H. H. M., and Fleuren-Jacobs, A. M. M., 1984, Synergistic effect of A23187 and a phorbol ester on amylase secretion from rabbit pancreatic acini, FEBS Lett. 170:64–68.PubMedCrossRefGoogle Scholar
  18. Downes, C. P., and Michell, R. H., 1982, Phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: Lipids in search of a function. Cell Calcium 3:467–502.PubMedCrossRefGoogle Scholar
  19. Downes, C. P. Mussat, M. C., and Michell, R. H., 1982, The inositol trisphosphate Phosphomonoesterase of the human erythrocyte membrane, Biochem. J. 203:169–177.Google Scholar
  20. Drummond, A. H., and Raeburn, C. A., 1984, The interaction of lithium with thyrotropin-releasing hormone-stimulated lipid metabolism in GH3 pituitary tumour cells, Biochem. J. 223:129–136.Google Scholar
  21. Fain, J. N., and Berridge, M. J., 1979, Relationship between phosphatidylinositol synthesis and recovery of 5-hydroxytryptamine-responsive Ca2+ flux in blowfly salivary gland, Biochem. J. 180:655–661.PubMedGoogle Scholar
  22. Fain, J. N., Li, S.-Y., Litosch, L, and Wallace, M., 1984, Synergistic activation of rat hepatocyte glycogen Phosphorylase by A23187 and phorbol ester, Biochem. Biophys. Res. Commun. 119:88–94.PubMedCrossRefGoogle Scholar
  23. Garrison, J. C., Johnsen, D. E., and Campanile, C. P., 1984, Evidence for the role of Phosphorylase kinase, protein kinase C, and other Ca2+ sensitive protein kinases in the response of hepatocytes to angiotensin II and vasopressin, J. Biol. Chem. 259:3283–3292.Google Scholar
  24. Gelfand, E. W., Dosh, H.-M., Hastings, D., and Shore, A., 1979, Lithium: A modulator of cyclic AMP-dependent events in lymphocytes. Science 203:365–367.PubMedCrossRefGoogle Scholar
  25. Gomperts, B. D., 1983, Involvement of guanine nucleotide-binding protein in the gating of Ca2+ by receptors. Nature 306:64–66.PubMedCrossRefGoogle Scholar
  26. Goodhardt, M., Ferry, N., Geynet. P., and Hanoune, J., 1982, Hepatic a i-adrenergic receptors show agonist regulation by guanine nucleotides, J. Biol. Chem. 257:11577–11583.Google Scholar
  27. Greenberg, M. E., and Ziff, E. B., 1984, Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene, Nature 311:433–438.PubMedCrossRefGoogle Scholar
  28. Habenicht, A. J. R., Glomset, J. A., King, W. C., Nist, C., Mitchell, C. D., and Ross, R., 1981, Early changes in phosphatidylinositol and arachidonic acid metabolism in quiescent Swiss 3T3 cells stimulated to divide by platelet-derived growth factor, J. Biol. Chem. 256:12329–12335.PubMedGoogle Scholar
  29. Hallcher, L. M., and Sherman, W. R., 1980, The effects of lithium ion and other agents on the activity of myo-inositol-l-phosphatase from bovine brain, J. Biol. Chem. 255:10896–10901.Google Scholar
  30. Haslam, R. J., and Davidson, M. M. L., 1984a, Guanine nucleotides decrease the free [Ca2+] required for secretion of serotonin from permeabilized blood platelets, FEBS Lett. 174:90–95.PubMedCrossRefGoogle Scholar
  31. Haslam, R. J., and Davidson, M. M. L., 1984b, Potentiation by thrombin of the secretion of serotonin from permeabilized platelets equilibrated with Ca2+ buffers, Biochem. J. 222:351–361.PubMedGoogle Scholar
  32. Haslam, R. J., and Davidson, M. M. L., 1984c, Receptor-induced diacylglycerol formation in permeabilized platelets: Possible role for a GTP-binding protein, J. Receptor Res. 4:605–629.Google Scholar
  33. Hesketh, T. R., Moore, J. P., Morris, J. D. H., Taylor, M. V., Rogers, J., Smith, G. A., and Metcalfe, J. C., 1985, A common sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells. Nature 313:481–484.PubMedCrossRefGoogle Scholar
  34. Hokin, M. R., and Hokin, L. E., 1953, Enzyme secretion and the incorporation of p2+ into phospholipids of pancreas slices, J. Biol. Chem. 203:967–977.PubMedGoogle Scholar
  35. Irvine, R. F., Letcher, A. J., and Dawson, R. M. C., 1984a, Phosphatidylinositol-4,5-bisphosphate phosphodiesterase and Phosphomonoesterase activities of rat brain, Biochem. J. 218:177–185.PubMedGoogle Scholar
  36. Irvine, R. F., Letcher, A. J., Lander, D. J., andDownes, C. P., 1984b, Inositol trisphosphate in carbachol-stimulated rat parotid glands, Biochem. J. 223:237–243.PubMedGoogle Scholar
  37. Irvine, R. F., Brown, K. D., and Berridge, M. J., 1984c, Specificity of inositol trisphosphate-induced calcium release from permeabilized Swiss-mouse 3T3 cells, Biochem. J. 222:269–272.PubMedGoogle Scholar
  38. Jolles, J., Zwiers, H., van Dongen, C. J., Schotman, P., Wirtz, K. W. A., and Gispen, W. H., 1980, Modulation of brain polyphosphoinositide metabolism by ACTH-sensitive protein phosphorylation. Nature 286:623–625.PubMedCrossRefGoogle Scholar
  39. Jolles, J., Zwiers, H., Dekker, A., Wirtz, K. W. A., and Gispen, W. H., 1981, Corticotropin-(l–24)-tetracosapeptide affects protein phosphorylation and polyphosphoinositide metaboHsm in rat brain, Biochem. J. 194:283–291.PubMedGoogle Scholar
  40. Jork, R., De Graan, P. W. E., Van Dongen, C. J., Zwiers, H., Matthias, H., and Gispen, W. H., 1984, Dopamine-induced changes in protein phosphorylation and polyphosphoinositide metaboHsm in rat hippocampus. Brain Res. 291:73–81.PubMedCrossRefGoogle Scholar
  41. Kaibuchi, K., Takai, Y., Sawamura, M., Hoshijima, M., Fujikura, T., and Nishizuka, Y., 1983, Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation, J. Biol. Chem. 258:6701–6704.PubMedGoogle Scholar
  42. Kirk, C. J., Michell, R. H., and Hems, D. A., 1981, Phosphatidylinositol metabolism in rat hepatocytes stimulated by vasopressin, Biochem. J. 194:155–165.PubMedGoogle Scholar
  43. Knight, D. E., and Baker, P. F., 1983, The phorbol ester TPA increase the affinity of exocytosis for calcium in ’leaky’ adrenal medullary cells, FEBS Lett. 160:98–100.PubMedCrossRefGoogle Scholar
  44. Koenig, H., Goldstone, A., and Lu, C. Y., 1983, Polyamines regulate calcium fluxes in a rapid plasma membrane response, Nature 305:530–534.PubMedCrossRefGoogle Scholar
  45. Kojima, L, Lippes, H., Kojima, K., and Rasmussen, H., 1983, Aldosterone secretion: Effect of phorbol ester and A23187, Biochem. Biophys. Res. Commun. 116:555–562.PubMedCrossRefGoogle Scholar
  46. Kolesnick, R. N., and Gershengom, M. C., 1984, Ca2+ ionophores affect phosphoinositide metabohsm differently than thyrotropin-releasing hormone in GH3 pituitary cells, J. Biol. Chem. 259:9514–9519.PubMedGoogle Scholar
  47. Koo, C., Lefkowitz, R. J., and Snyderman, R., 1983, Guanine nucleotides modulate the binding affinity of the oligopeptide chemoattractant receptor on human polymorphonuclear leukocytes, J. Clin. Invest. 72:748–753.PubMedCrossRefGoogle Scholar
  48. Kruijer, W., Cooper, J. A., Hunter, T., and Verma, I. M., 1984, Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature 312:711–716.PubMedCrossRefGoogle Scholar
  49. Litosch, I., Wallis, C., and Fain, J. N., 1985, 5-Hydroxytryptamine stimulates inositol phosphate production in cell-free system from blowfly salivary glands: Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown, J. Biol. Chem. 260:5464–5471.Google Scholar
  50. Mastro, A. M., and Smith, M. C., 1983, Calcium-dependent activation of lymphocytes by ionophore, A23187 and a phorbol ester tumor promotor, J. Cell. Physiol. 116:51–56.PubMedCrossRefGoogle Scholar
  51. Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415:81–147.PubMedGoogle Scholar
  52. Michell, R. H., Kirk, C. J., Jones, L. M., Downes, C. P., and Creba, J. A., 1981, The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: Defined characteristics and unanswered questions. Phil. Trans. R. Soc. [Biol.] 296:123–137.CrossRefGoogle Scholar
  53. Molski, T. F. P., Naccache, P. H., Marsh, M. L., Kermode, J., Becker, E. L., and Sha’afi, R. I., 1984, Pertussis toxin inhibits the rise in intracellular concentration of free calcium that is induced by chemotactic factors in rabbit neutrophils: possible role of the ’G proteins’ in calcium mobilization, Biochem. Biophys. Res. Commun. 124:644–650.PubMedCrossRefGoogle Scholar
  54. Monaco, M. E., 1982, The phospatidyhnositol cycle in WRK-1 cells, J. Biol. Chem. 257:2137–2139.PubMedGoogle Scholar
  55. Moolenaar, W. H., Tertoolen, L. G. J., and de Laat, S. W., 1984, Growth factors immediately raise cytoplasmic free Ca2+ in human fibroblasts, J. Biol. Chem. 259:8066–8069.PubMedGoogle Scholar
  56. Nakamura, T., and Ui, M., 1984, Islet-activating protein, pertussis toxin, inhibits Ca2+-induced and guanine nucleotide-dependent releases of histamine and arachidonic acid from rat mast cells, FEBS Lett. 173:414–418.PubMedCrossRefGoogle Scholar
  57. Nishizuka, Y., 1983, Phospholipid degradation and signal translation for protein phosphorylation, Trends Biochem. Sci. 8:13–16.CrossRefGoogle Scholar
  58. Nishizuka, Y., 1984a, The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308:693–697.PubMedCrossRefGoogle Scholar
  59. Nishizuka, Y., 1984b, Turnover of inositol phospholipids and signal transduction. Science 255:1365–1370.CrossRefGoogle Scholar
  60. Okajima, F., and Ui, M., 1984, ADP-ribosylation of the specific membrane protein by islet-activating protein, pertussis toxin, associated with inhibition of a chemotactic peptide-induced arachidonate release in neutrophils, J. Biol. Chem. 259:13863–13871.PubMedGoogle Scholar
  61. Putney, J. W., McKinney, J. S., Aub, D. L., and Leslie, B. A., 1984, Phorbol ester-induced protein secretion in rat parotid gland, Mol. Pharmacol. 26:261–266.PubMedGoogle Scholar
  62. Rasmussen, H., 1981, Calcium and cAMP as Synarchic Messengers, John Wiley & Sons, New York.Google Scholar
  63. Rasmussen, H., Forder, J., Kojima, I., and Scriabine, A., 1984, TPA-induced contraction of isolated rabbit vascular smooth muscle, Biochem. Biophys. Res. Commun. 122:776–784.Google Scholar
  64. Rink, T. J., Sanchez, A., and Hallam, T. J., 1983, Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature 305:317–319.Google Scholar
  65. Rittenhouse-Simmons, S., 1979, Production of diglyceride from phosphatidylinositol in activated human platelets, J. Clin. Invest. 63:580–587.PubMedCrossRefGoogle Scholar
  66. Rittenhouse, S. E., and Home, W. C., 1984, lonomycin can elevate intraplatelet Ca2+ and activate phospholipase A without activating phospholipase C, Biochem. Biophys. Res. Commun. 123:393–397.Google Scholar
  67. Robinson, J. M., Badwey, J. A., Kamovsky, M. L., and Kamovsky, M. J., 1984, Superoxide release by neutrophils: Synergistic effects of a phorbol ester and a calcium ionophore, Biochem. Biophys. Res. Commun. 112x1–19.Google Scholar
  68. Rosofif, P. M., Stein, L. F., and Cantley, L. C., 1984, Phorbol esters induce differentiation in a pre-B-lymphocyte cell line by enhancing Na+/H+ exchange, J. Biol. Chem. 259:7056–7060.Google Scholar
  69. Rybak, S. M., and Stockdale, F. E., 1981, Growth effects of lithium chloride in BALB/c3T3 fibroblasts and Madin-Darby canine kidney epithelial cells, Exp. Cell Res. 136:263–270.Google Scholar
  70. Seyfred, M. A., Farrell, L. E., and Wells, W. W., 1984, Characterization of D-myo inositol 1,4,5-trisphosphate phosphatase in rat Hver plasma membrane, J. Biol. Chem. 259:13204–13208.PubMedGoogle Scholar
  71. Simon, M.-F., Chap, H., and Douste-Blazy, L., 1984, Activation of phospholipase C in thrombin-stimulated platelets does not depend on cytoplasmic free calcium concentration, FEBS Lett. 170:43–48.PubMedCrossRefGoogle Scholar
  72. Smith, C. D., Lane, B. C., Kusaka, I., Verghese, M. W., and Snyderman, R., 1985, Chemo-attractant receptor induced hydrolysis of phosphatidylinositol 4, 5-bisphosphate (PIP2) in human polymorphonuclear leukocyte membranes. J. Biol. Chem. 260:5875–5878.PubMedGoogle Scholar
  73. Snyderman, R., and Pike, M. C., 1984, Chemoattractant receptors on phagocytic cells, Annu. Rev. Immunol. 2:257–281.PubMedCrossRefGoogle Scholar
  74. Tanaka, C., Taniyama, K., and Kusunoki, M., 1984, A phorbol ester and A23187 act synergistically to release acetylcholine from the guinea pig ileum, FEBS Lett. 175:165–169.Google Scholar
  75. Taylor, M. V., Metcalfe, J. C., Hesketh, T. R., Smith, G. A., and Moore, J. P., 1984, Mitogens increase phosphorylation of phosphoinositides in thymocytes. Nature 312:462–465.PubMedCrossRefGoogle Scholar
  76. Thomas, A. P., Alexander, J., and Williamson, J. R., 1984, Relationship between inositol polyphosphate production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes, J. Biol. Chem. 259:5574–5584.PubMedGoogle Scholar
  77. Tomooka, Y., Imagawa, W., Nandi, S., and Bern, H. A., 1983, Growth effect of lithium on mouse mammary epithelial cells in serum-free collagen gel culture, J. Cell. Physiol. 117:290–296.PubMedCrossRefGoogle Scholar
  78. Van Dongen, C. J., Zwiers, H., and Gispen, W. H., 1984, Purification and partial characterization of the phosphatidylinositol 4-phosphate kinase from rat brain, Biochem. J. 223:197–203.PubMedGoogle Scholar
  79. Volpi, M., Yassin, R., Naccache, P. H., and Sha’afi, R. L, 1983, Chemotactic factor causes rapid decreases in phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate in rabbit neutrophils, Biochem. Biophys. Res. Commun. 112:957–964.PubMedCrossRefGoogle Scholar
  80. Volpi, M., Naccache, P. H., Molski, T. F. P., Shefcyk, J., Huang, C.-K., Marsh, M. L., Munoz, J., Becker, E. L., and Sha’afi, R. I., 1985, Pertussis toxin inhibits the formyl-methionyl-leucyl-phenylalanine but not the phorbol ester stimulated changes in ion fluxes, protein phosphorylation and phosphoHpid metabolism in rabbit neutrophils: Role of the “G-proteins” in excitation response coupling, Proc. Natl. Acad. Sci. U.S.A. 82:2708–2712.PubMedCrossRefGoogle Scholar
  81. Whitaker, M., and Irvine, R. F., 1984, Inositol 1,4,5-trisphosphate microinjection activates sea urchin eggs. Nature 312:636–639.CrossRefGoogle Scholar
  82. Whiteley, B., Cassel, D., Zhuang, Y.-X., and Glaser, L., 1984, Tumour promotor phorbol 12-myristate 13-acetate inhibits mitogen-stimulated Na2+/H+ exchange in human epidermoid carcinoma A431 cells, J. Cell Biol. 99:1162–1166.PubMedCrossRefGoogle Scholar
  83. Whitman, M. R., Epstein, J., and Cantley, L., 1984, Inositol 1,4,5-trisphosphate stimulates phosphorylation of a 62,000-dalton protein in monkey fibroblasts and bovine brain cell lysates, J. Biol. Chem. 259:13652–13655.PubMedGoogle Scholar
  84. Yano, K., Nakashima, S., and Nazawa, Y., 1983, Coupling of polyphosphoinositide breakdown with calcium influx in formylmethionyl-leucyl-phenylalanine-stimulated rabbit neutrophils, FEBS Lett. 161:296–300.PubMedCrossRefGoogle Scholar
  85. Zawalich, W., Brown, C., and Rasmussen, H., 1983, Insulin secretion: Combined effects of phorbol ester and A23187, Biochem. Biophys. Res. Commun. 117:448–455.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Michael J. Berridge
    • 1
  1. 1.AFRC Unit, Department of ZoologyUniversity of CambridgeCambridgeEngland

Personalised recommendations