Advertisement

Interstitial Solutions

  • N. A. Gokcen

Abstract

It was stated in Chapter 2 that when the atomic diameter of a metalloid is about 59% or less than that of a solvent metal, then the metalloid may form an interstitial solid solution. Such metalloids are hydrogen, boron, carbon, nitrogen, and oxygen, but silicon, phosphorus, and sulfur may also form interstitial solid solutions in certain favorable cases. The interstitial solid solutions of hydrogen and carbon in metals have received particular attention because they form some of the most interesting alloy systems. Metalhydrogen systems are very useful in hydrogen storage, hydrogen purification, and isotope separation, and metal-carbon systems have unusual structural and mechanical properties. We shall present and discuss the Pd-H and Fe-C systems and then the Wagner theory on the solutions of interstitials in binary metal solutions.

Keywords

Activity Coefficient Hydrogen Storage Metal Hydride Plateau Pressure Standard Gibbs Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Alefeld and J. Voelkl, editors, Hydrogen in Metals I, and II, Springer-Verlag, Berlin (1978).Google Scholar
  2. 2.
    G. A. Lewis, The Palladium Hydrogen System, Academic Press, New York (1967).Google Scholar
  3. 3.
    W. M. Mueller, J. P. Blackledge, and G. G. Libowitz, Metal Hydrides, Academic Press, New York (1968).Google Scholar
  4. 4.
    H. Frieske and E. Wicke, Ber. Bunsenges. Phys. Chem. 77, 50 (1973).Google Scholar
  5. 5.
    E. Wicke and H. Brodowsky, with H. Zuchner, in Hydrogen in Metals II, edited by G. Alefeld and J. Voelkl, Springer-Verlag, Berlin (1978).Google Scholar
  6. 6.
    T. B. Flanagan, S. Kishimoto, and G. E. Biehl, in Chemical MetallurgyA Tribute to Carl Wagner, edited by N. A. Gokcen, Metall. Soc. AIME, p. 471 (1981).Google Scholar
  7. 7.
    E. Wicke and G. H. Nernst, Ber. Bunsenges. Phys. Chem. 68, 224 (1964).Google Scholar
  8. 8.
    J. F. Lynch and T. B. Flanagan, J . Phys. Chem. 77, 2628 (1973).CrossRefGoogle Scholar
  9. 9.
    D. M. Nace and J. G. Aston, J . Am. Chem. Soc. 79, 3619, 3623, 3627 (1957).CrossRefGoogle Scholar
  10. 9a.
    J. G. Aston, Engelhard Ind. Tech. Bull. 7, 14 (1966).Google Scholar
  11. 10.
    J. D. Clewley, T. Curran, T. B. Flanagan, and W. A. Oates, J . Chem. Soc. Faraday Trans. l 69, 449 (1973).CrossRefGoogle Scholar
  12. 11.
    S. Schmidt, in Hydrogen in Metals II, edited by G. Alefeld and J. Völkl, Springer-Verlag, Berlin (1978).Google Scholar
  13. 12.
    G. Sicking, Ber. Bunsenges. Phys. Chem. 76, 790 (1972).Google Scholar
  14. 13.
    J. R. Lacher, Proc. R. Soc. London Ser. A 161, 525 (1937).CrossRefGoogle Scholar
  15. 14.
    M. Shamsuddin and O. J. Kleppa, J . Chem. Phys. 71, 5154 (1979);CrossRefGoogle Scholar
  16. 14a.
    W. A. Oates and R. Ramanathan, in Proceedings, 2nd International Congress on Hydrogen in Metals, Paris, 1977, Paper 2A11, Pergamon Press, Elmsford, New York (1978);Google Scholar
  17. 14b.
    G. Bourreau, O. J. Kleppa, and K. C. Hong, J . Chem. Phys. 67, 3437 (1977).CrossRefGoogle Scholar
  18. 15.
    M. Hillert and L.-I. Staffansson, Acta Chem. Scand. 24, 3618 (1970).CrossRefGoogle Scholar
  19. 15a.
    M. Hillert and M. Jarl, Metall. Trans. AIME 6A, 553 (1975).CrossRefGoogle Scholar
  20. 16.
    C. Wagner, Z. Phys. Chem. Abt. A 193, 386, 407 (1944).Google Scholar
  21. 17.
    See, e.g., B. Baranowski, Part II in Hydrogen in Metals, edited by G. Alefeld and J. Völkl, Springer-Verlag, Berlin (1978), p. 157.Google Scholar
  22. 18.
    M. J. B. Evans and D. H. Everett, J . Less-Common Met. 49, 123 (1976).CrossRefGoogle Scholar
  23. 19.
    T. Takeshita, W. E. Wallace, and R. S. Craig, Inorg. Chem. 13, 2283 (1974).CrossRefGoogle Scholar
  24. 20.
    U. Köbler and J. M. Welter, J . Less-Common Met. 84, 225 (1984).CrossRefGoogle Scholar
  25. 21.
    U. Köbler and T. Schöber, J . Less-Common Met. 60, 101 (1978).CrossRefGoogle Scholar
  26. 21a.
    T. Schöber and H. Wenzl, in Hydrogen in Metals II, edited by G. Alefeld and J. Völkl, Springer-Verlag, Berlin, p. 12 (1978).Google Scholar
  27. 22.
    T. N. Veziroglu and J. B. Taylor, editors, Hydrogen Energy Progress V: Proceedings of the 5th World Hydrogen Energy Conference, Toronto, Canada, 15–20 July 1984, Pergamon Press, Elmsford, New York (1984).Google Scholar
  28. 23.
    J. O. Bockris, Energy: The Solar Hydrogen Alternative, Wiley, New York (1977).Google Scholar
  29. 24.
    R. Wiswall, in Hydrogen in Metals II, edited by G. Alefeld and J. Voelkl, Springer-Verlag, Berlin, p. 201 (1978).Google Scholar
  30. 25.
    J. J. Reilly, Z. Phys. Chem. 117, 155 (1979).CrossRefGoogle Scholar
  31. 26.
    K. C. Hoffman, J. J. Reilly, C. H. Waide, R. H. Wiswall, and W. E. Winsche, Int. J. Hydrogen Energy 1, 133 (1976).CrossRefGoogle Scholar
  32. 27.
    G. G. Libowitz, H. F. Hayes, and T. R. P. Gibb, J. Phys. Chem. 62, 76 (1958).CrossRefGoogle Scholar
  33. 28.
    J. H. N. van Vucht, F. A. Kuijpers, and H. C. Bruning, Philips Res. Rep. 25, 33 (1970)Google Scholar
  34. 28a.
    H. H. van Mal, Philips Res. Rep. Suppl. 1 (1976).Google Scholar
  35. 29.
    H. H. van Mal, K. H. J. Buschow, and F. A. Kuijpers, J . Less-Common Met. 32, 289 (1973).CrossRefGoogle Scholar
  36. 30.
    J. L. Anderson, T. C. Wallace, A. L. Bowman, C. L. Radosevich, and M. L. Courtney, Hydrogen Absorption by AB 5 Compounds, Los Alamos Sci. Lab., Rep. LA-5320-MS (1973).CrossRefGoogle Scholar
  37. 31.
    F. A. Kuijpers and H. H. van Mal, J . Less-Common Met. 23, 395 (1971).CrossRefGoogle Scholar
  38. 32.
    G. Bambakidis, editor, Metal Hydrides, Plenum Press, New York (1981).Google Scholar
  39. 33.
    H. Ohtani, M. Hasebe, and T. Nishizawa, Trans. Iron Steel Inst. Jpn. 24, 857 (1984).CrossRefGoogle Scholar
  40. 34.
    M. Hasebe, H. Ohtani, and T. Nishizawa, Met. Trans. 16A, 913 (1985).Google Scholar
  41. 35.
    J. Ågren, Metall. Trans. AIME 10A, 1847 (1979).CrossRefGoogle Scholar
  42. 36.
    H. Harvig, Jernkontorets Ann. 155, 157 (1971).Google Scholar
  43. 37.
    J. Chipman, Metall. Trans. AIME 3, 55 (1972).CrossRefGoogle Scholar
  44. 38.
    O. Kubaschewski, Iron Binary Phase Diagrams, Springer-Verlag, Berlin (1982).Google Scholar
  45. 39.
    R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metals Park, Ohio (1973).Google Scholar
  46. 40.
    M. Benz and J. F. Elliott, Trans. Metall. Soc. AIME 221, 323 (1961).Google Scholar
  47. 41.
    M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw-Hill, New York (1958); First Supplement by R. P. Elliott (1965); Second Supplement by F. A. Shunk (1969).Google Scholar
  48. 42.
    R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, and D. D. Wagman, Selected Values of the Thermodynamic Properties of the Elements, ASM, Metals Park, Ohio (1973).Google Scholar
  49. 43.
    R. L. Orr and J. Chipman, Trans. Metall. Soc. AIME 239, 630 (1967).Google Scholar
  50. 44.
    Y.-Y. Chuang, Y. A. Chang, and R. Schmid, Acta Metall, in press.Google Scholar
  51. 45.
    Y.-Y. Chuang, R.. Schmid, and Y. A. Chang, Acta Metall, in press.Google Scholar
  52. 46.
    R. P. Smith, J . Am. Chem. Soc. 68, 1163 (1946).CrossRefGoogle Scholar
  53. 47.
    H. Schenk, M. G. Frohberg, and E. Jaspert, Archiv. Eisenhütenw. 36, 683 (1965).Google Scholar
  54. 48.
    K. Bungardt, H. Preisendanz, and G. Lehnert, Arch. Eisenhuettenwes. 35, 999 (1964).Google Scholar
  55. 49.
    S. Banya, J. F. Elliott, and J. Chipman, Trans. Metall. Soc. AIME 245, 1199 (1969);Google Scholar
  56. 49a.
    S. Banya, J. F. Elliott, and J. Chipman, Met. Trans. 1A, 1313 (1970).Google Scholar
  57. 50.
    L. B. Pankratz, J. M. Stuve, and N. A. Gokcen, Thermodynamic Data for Mineral Technology, Bureau of Mines Bulletin 677 (1984).Google Scholar
  58. 51.
    F. D. Richardson and W. E. Dennis, Trans. Faraday Soc. 49, 171 (1953).CrossRefGoogle Scholar
  59. 52.
    S. Banya and Y. Matoba, Physical Chemistry of Process Metallurgy, Interscience, New York, pp. 373–402 (1961).Google Scholar
  60. 53.
    T. Mori, K. Fujimura, H. Okajima, and A. Yamanchi, Tetsu To Hagane 54, 321 (1968).Google Scholar
  61. 54.
    E. Schürmann and R. Schmid, Arch. Eisenhuettenwes. 50, 101 (1971).Google Scholar
  62. 55.
    E. Scheil, T. Schmidt, and J. Wünning, Arch. Eisenhuettenwes. 32, 251 (1961).Google Scholar
  63. 56.
    C. Wagner, Acta Metall. 21, 1297 (1973).CrossRefGoogle Scholar
  64. 57.
    L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York (1960).Google Scholar
  65. 58.
    U. Block and H. P. Stüwe, Z. Metallkd. 60, 709 (1969).Google Scholar
  66. 59.
    R. J. Fruehan and F. D. Richardson, Trans. Metall. Soc. AIME 245, 1721 (1969).Google Scholar
  67. 60.
    E. S. Tankins and N. A. Gokcen, High Temp. Sci. 4, 393 (1972);Google Scholar
  68. 60.
    E. S. Tankins, Metall. Trans. AIME 1, 2637 (1970).Google Scholar
  69. 61.
    K. T. Jacob and J. H. E. Jeffes, Trans. Inst. Min. Metall. C80, 32 (1971).Google Scholar
  70. 61a.
    K. T. Jacob and J. H. E. Jeffes, J. Chem. Thermodyn. 3, 433 (1971),CrossRefGoogle Scholar
  71. 61b.
    K. T. Jacob and J. H. E. Jeffes, J. Chem. Thermodyn. 5, 365 (1973).CrossRefGoogle Scholar
  72. 62.
    T. Chiang and Y. A. Chang, Metall. Trans. AIME 7B, 453 (1976).CrossRefGoogle Scholar
  73. 63.
    J.-C. Mathieu, F. Durand, and E. Bonnier, J. Chim. Phys. 62, 1289, 1297 (1965);Google Scholar
  74. 63a.
    B. Brion, J.-C. Mathieu, P. Hicter, and P. Desré, J. Chim. Phys. 66, 1238, 1745 (1970).Google Scholar
  75. 64.
    M. Blander and M.-L. Saboungi, in Chemical MetallurgyA Tribute to Carl Wagner, edited by N. A. Gakcen, Metall. Soc. AIME, p. 223 (1981).Google Scholar
  76. 65.
    N. A. Gokcen, Thermodynamics, Techscience, Hawthorne, California (1975).Google Scholar
  77. 66.
    N. A. Gokcen, Trans. Metall. Soc. AIME 206, 1558 (1956);Google Scholar
  78. 66a.
    N. A. Gokcen, Trans. Metall. Soc. AIME 197, 191 (1953).Google Scholar
  79. 67.
    M. R. Baren and N. A. Gokcen, in Advances in Sulfide Smelting, V. 1 Basic Principles, edited by Y. H. Sohn, D. B. George, and A. D. Zunkel, AIME, Warrendale, Pennsylvania (1983) p. 41;Google Scholar
  80. 67a.
    see also G. Urbain, W. Burgmann, and M. G. Frohberg, C. R. Acad. Sci. Ser. C 263(8), 595 (1966).Google Scholar
  81. 68.
    K. T. Jacob and C. B. Alcock, Acta Metall. 20, 221 (1972).CrossRefGoogle Scholar
  82. 69.
    H. Brodowsky and E. Poeschel, Z. Phys. Chem. 44, 143 (1965).CrossRefGoogle Scholar
  83. 70.
    H. Brodowsky and H. Husemann, Ber. Bunsenges. Phys. Chem. 70, 626 (1966).Google Scholar
  84. 71.
    F. G. Jones and R. D. Pehlke, Metall Trans. AIME 2, 2655 (1971).CrossRefGoogle Scholar
  85. 72.
    S. J. Wang and H. J. Grabke, Z. Metalld. 61, 597 (1970).Google Scholar
  86. 73.
    W. Siegelin, K. H. Lieser, and H. Witte, Z. Elektrochem. 61, 359 (1957).Google Scholar
  87. 74.
    H. Schnabl, Ber. Bunsenges. Phys. Chem. 68, 549 (1964).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • N. A. Gokcen
    • 1
  1. 1.Bureau of Mines, U.S. Department of the InteriorAlbany Research CenterAlbanyUSA

Personalised recommendations