Long-Range Order

  • N. A. Gokcen


Chapter 2 dealt with the phase equilibria in alloys involving only the first-order phase transitions. The Gibbs energy of a given multicomponent system is a function of its variables of state P, T, n 1 , n 2,..., n c , i.e., G = G (P, T, n 1, n 2,..., n c ). This function is continuous for the first-order phase transitions but its derivative, with respect to one of its variables, becomes discontinuous upon a first-order transition. The variable of the greatest importance is the temperature; therefore, we limit our discussion to the derivatives of G with respect to T. A first-order transition is accompanied with a discontinuity in the first derivatives of G; thus,
$$\frac{{\partial G}}{{\partial T}} =- S;\quad or\;\frac{{\partial (G/T)}}{{\partial (1/T)}} = H$$
would show a discontinuity in the entropy or enthalpy when these properties are measured from a reference temperature such as T = 0, or often more conveniently, T = 298.15 K. Condensation and freezing of pure components provide some of the most elementary examples of first-order transitions. At a second-order transition, the second derivatives of G exhibit a discontinuity; i.e.,
$$\frac{{\partial ^2G}}{{\partial T}} = - \frac{{{C_P}}}{T};\quad or\;\frac{{{\partial ^2}(G/T)}}{{\partial (1/T)\partial T}} = {C_P}$$
In summary, S, or H, is discontinuous for the first-order phase transitions and C p is discontinuous for the second-order phase transitions.


Gibbs Energy Critical Temperature Regular Solution Zeroth Approximation Equiatomic Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. S. Gorsky, Z. Phys. 50, 64 (1928).CrossRefGoogle Scholar
  2. 2.
    W. L. Bragg and E. J. Williams, Proc. R. Soc. London Ser. A 145, 699 (1934);CrossRefGoogle Scholar
  3. 2a.
    W. L. Bragg and E. J. Williams, Proc. R. Soc. London Ser. A 151, 540 (1935).CrossRefGoogle Scholar
  4. 3.
    H. A. Bethe, Proc. R. Soc. London Ser. A 150, 552 (1935).CrossRefGoogle Scholar
  5. 4.
    E. A. Guggenheim, Mixtures, Oxford University Press, London, Chapters IV and VII (1952).Google Scholar
  6. 5.
    R. Fowler and E. A. Guggenheim, Statistical Thermodynamics, Cambridge University Press, London, Chapter XII (1956).Google Scholar
  7. 6.
    M. A. Krivoglaz and A. A. Smirnov, The Theory of Order-Disorder in Alloys, Macdonald, London (1965);Google Scholar
  8. 6a.
    J. M. Cowley, Phys. Rev. 120, 1648 (1960).CrossRefGoogle Scholar
  9. 7.
    R. M. White and T. H. Geballe, Long Range Order in Solids, Supplement 15, Solid State Physics, Student Edition, Academic Press, New York (1983).Google Scholar
  10. 8.
    I. Prigogine, The Molecular Theory of Solutions, North-Holland, Amsterdam (1957).Google Scholar
  11. 9.
    D. de Fontaine, Solid State Phys. 34, 73 (1979);CrossRefGoogle Scholar
  12. 9a.
    D. de Fontaine, Acta Metall. 23, 553 (1975).CrossRefGoogle Scholar
  13. 10.
    H. Sato, in Physical Chemistry: An Advanced Treatise, Volume X, edited by W. Jost, Academic Press, New York, p. 579 (1970).Google Scholar
  14. 11.
    N. A. Gokcen and E. T. Chang, J . Chem. Phys. 55, 2279 (1971);CrossRefGoogle Scholar
  15. 11a.
    N. A. Gokcen and E. T. Chang, Scr. Metall. 4, 941 (1970); A New Method for Enumerating Molecular Configurations in Propellant Mixtures, Aerospace Report No. TR-0172 (2210–10)-1, The Aerospace Corp., El Segundo, California (1971).CrossRefGoogle Scholar
  16. 12.
    N. A. Gokcen, Scr. Metall. 17, 53 (1983). (The treatment presented in this reference contains minor initial statistical errors that have been corrected in this book. However, final equations and conclusions are correct in this reference.)CrossRefGoogle Scholar
  17. 13.
    N. A. Gokcen, Thermodynamics, Techscience, Hawthorne, California, Chapter XI (1975).Google Scholar
  18. 14.
    R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metals Park, Ohio (1973).Google Scholar
  19. 15.
    D. Chipman and B. E. Warren, J. Appl. Phys. 21, 696 (1950).CrossRefGoogle Scholar
  20. 16.
    H. Moser, Phys. Z. 37, 737 (1936).Google Scholar
  21. 17.
    C. Sykes and H. Wilkinson, J. Inst. Met. 61, 223 (1937).Google Scholar
  22. 18.
    R. Kikuchi, Phys. Rev. 81, 988 (1951);CrossRefGoogle Scholar
  23. 18a.
    R. Kikuchi, J . Chem. Phys. 60, 1071 (1974); and the intervening papers.CrossRefGoogle Scholar
  24. 19.
    E. A. Guggenheim and M. L. McGlashan, Mol. Phys. 5, 433 (1962).CrossRefGoogle Scholar
  25. 20.
    R. Kikuchi, J . Chem. Phys. 60, 1071 (1974);CrossRefGoogle Scholar
  26. 20.
    R. Kikuchi and C. M. van Baal, Scr. Metall. 8, 425 (1974).CrossRefGoogle Scholar
  27. 21.
    D. M. Burley, in Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green, Volume 2, Academic Press, New York, p. 329 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • N. A. Gokcen
    • 1
  1. 1.Bureau of Mines, U.S. Department of the InteriorAlbany Research CenterAlbanyUSA

Personalised recommendations