The most general and simple theory intended to fit liquid and solid solutions is the regular solution theory developed by vanLaar and Lorenz (1925), Heitler (1926), and Hildebrand (1928). The term regular solution was proposed by Hildebrand (1929) for solutions described by random and yet nonideal behavior. This proposed behavior was properly called the zeroth approximation to the regular solutions by Guggenheim,1 as distinct from the first approximation, to be discussed later in this chapter. Early developments in this field are presented in a number of publications.1–3


Regular Solution Zeroth Approximation Actual Arrangement Bond Balance Regular Solution Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Guggenheim, Mixtures, Oxford University Press, London (1952).Google Scholar
  2. 2.
    C. Wagner, Thermodynamics of Alloys, translated by S. Mellgren and J. H. Westbrook, Addison-Wesley, Reading, Massachusetts (1952).Google Scholar
  3. 3.
    J. H. Hildebrand and R. L. Scott, The Solubility of Nonelectrolytes, Third Edition, Reinhold, New York (1950).Google Scholar
  4. 4.
    N. A. Gokcen and E. T. Chang, J. Chem. Phys. 55, 2279 (1971).CrossRefGoogle Scholar
  5. 5.
    H. A. Bethe, Proc. R. Soc. London Ser. A 150, 552 (1935).CrossRefGoogle Scholar
  6. 6.
    N. A. Gokcen and E. T. Chang, A New Method for Enumerating Molecular Configurations in Propellant Mixtures, Aerospace Report No. TR-0172 (2210–10)-1, The Aerospace Corp., El Segundo, California (1971).Google Scholar
  7. 7.
    R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metals Park, Ohio (1973).Google Scholar
  8. 8.
    J.-C. Mathieu, F. Durand, and E. Bonnier, J. Chim. Phys. 62, 1289, 1297 (1965);Google Scholar
  9. 8a.
    B. Brion, J.-C. Mathieu, P. Hicter, and P. Desré, J. Chem. Phys. 66, 1238, 1745 (1970).Google Scholar
  10. 9.
    C. H. P. Lupis and J. F. Elliott, Acta Metall. 15, 265 (1967).CrossRefGoogle Scholar
  11. 10.
    N. A. Gokcen, Scr. Metall. 16, 723 (1982).CrossRefGoogle Scholar
  12. 11.
    C. Wagner, Acta Metall. 6, 309 (1958).CrossRefGoogle Scholar
  13. 12.
    L. J. Vieland, Acta Metall. 11, 137 (1963).CrossRefGoogle Scholar
  14. 13.
    C. D. Thurmond, J. Phys. Chem. Solids 26, 785 (1965).CrossRefGoogle Scholar
  15. 14.
    A. S. Jordan, Metall. Trans. AIME 1, 239 (1970).Google Scholar
  16. 15.
    K.-C. Hsieh, M. S. Wei, and Y. A. Chang, Z Metallkd. 74, 330 (1983).Google Scholar
  17. 16.
    Y. Nakamura, S. Himuro, and M. Shimoji, Ber. Bunsenges. Phys. Chem. 84, 240 (1980).Google Scholar
  18. 17.
    J. Rakotomavo, M.-C. Baron, and C. Petot, Metall. Trans. AIME 12B, 461 (1981).CrossRefGoogle Scholar
  19. 18.
    W. Biltz and W. Mecklenburg, Z. Anorg. Chem. 64, 226 (1909).CrossRefGoogle Scholar
  20. 19.
    M. Le Bouteiller, A. M. Martre, R. Farhi, and C. Petot, Metall. Trans. AIME 8B, 339 (1977).CrossRefGoogle Scholar
  21. 20.
    C. Wagner, Acta Metall. 21, 1297 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • N. A. Gokcen
    • 1
  1. 1.Bureau of Mines, U.S. Department of the InteriorAlbany Research CenterAlbanyUSA

Personalised recommendations