Cell—Cell and Cell—Matrix Interactions in the Morphogenesis of Skeletal Muscle

  • David C. Turner
Part of the Developmental Biology book series (DEBO, volume 3)


There is a tendency, widespread but by no means universal, to equate developmental biology with the study of cell differentiation. An emphasis on the problem of differentiation is understandable because it has been the area of greatest progress. Recent advances in molecular biology make it likely that an understanding of the molecular mechanisms responsible for differential gene expression in eukaryotic development will be achieved fairly soon. And yet, as the above quotation reminds us, the ultimate concern of the developmental biologist is to comprehend morphogenesis.


Neural Crest Cell Primordial Germ Cell Myogenic Cell Pericellular Matrix Skeletal Myogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, I. U., and Hynes, R. O., 1978, Effects of LETS glycoprotein on cell motility, Cell 14:439–446.PubMedCrossRefGoogle Scholar
  2. Bader, D., Masaki, T., and Fischman, D. A., 1982, Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro, J. Cell Biol. 95:763–770.PubMedCrossRefGoogle Scholar
  3. Barnes, D. W., Silnutzer, J., See, C.,and Shaffer, M., 1983, Characterization of human serum spreading factor with monoclonal antibody, Proc. Natl Acad. Sci. USA 80:1362–1366.PubMedCrossRefGoogle Scholar
  4. Bischoff, R. ,1978, Myoblast fusion, in: Membrane Fusion (G. Poste and G. L. Nicolson, eds.), pp. 128–179, Elsevier/North-Holland, Amsterdam.Google Scholar
  5. Buckingham, M. E., 1977, Muscle protein synthesis and its control during differentiation of skeletal muscle cells in vitro, in: Biochemistry of Cell Differentiation II ,Vol. 15 (J. Paul, ed.), pp. 269–332, University Park Press, Baltimore.Google Scholar
  6. Caravatti, M., Perriard, J. C. ,and Eppenberger, H. M., 1979, Developmental regulation of creatine kinase isozymes in myogenic cell cultures from chicken: Biosynthesis of creatine kinase subnits M and B, J. Biol. Chem. 254:1388–1394.PubMedGoogle Scholar
  7. Chen, L. B., Murray, A., Segal, R. A. ,Bushnell, A. ,and Walsh, M. L., 1978, Studies on intercellular LETS glycoprotein matrices, Cell 14:377–391.PubMedCrossRefGoogle Scholar
  8. Chiquet, M., Puri, E. C.,and Turner, D. C.,1979, Fibronectin mediates attachment of chick myo blasts to a gelatin-coated substratum, J. Biol. Chem. 254:5475–5482.PubMedGoogle Scholar
  9. Chiquet, M., Eppenberger, H. M., and Turner, D. C.,1981, Muscle morphogenesis: Evidence for an organizing function of exogenous fibronectin, Dev. Biol 88:220–235.PubMedCrossRefGoogle Scholar
  10. Christ, B., Jacob, H. J., Jacob, M., and Wachtier, F., 1983, On the origin, distribution, and determination of avian limb mesenchymal cells, in: Limb Development and Regeneration, Part B (R. O. Kelley, P. F. Goetinck, and J. A. MacCabe, eds.}, pp. 281–292, Alan R. Liss, New York.Google Scholar
  11. Ehrismann, R., Chiquet, M., and Turner, D. C., 1981, Mode of action of fibronectin in promoting chicken myoblast attachment. A Mr = 60,000 gelatin-binding fragment also binds native fibronectin, J. Biol. Chem. 256:4056–4062.PubMedGoogle Scholar
  12. Ehrismann, R., Roth, D., Eppenberger, H. M., and Turner, D. C.,1982, Arrangement of attachmentromoting, self-association, and heparin-binding sites in horse serum fibronectin, J. Biol. Chem. 257:7381–7387.PubMedGoogle Scholar
  13. Eppenberger, H. M., and Perriard, J. C. (eds.), 1984, Developmental Processes in Normal and Diseased Muscle ,S. Karger, Basel, Switzerland.Google Scholar
  14. Field, H. H., 1894, Die Vornierenkapsel, ventrale Muskulatur und Extremitaetenanlagen bei den Amphibien, Anat. Anz. 9:713–714.Google Scholar
  15. Fischel, A., 1895, Zur Entwicklung der ventralen Rumpfund der Extremitaetenmuskulatur der Voegel und Saeugethiere, MorphoJ. Jahrh. 23:544–561.Google Scholar
  16. Hauschka, S. D., 1972, Cultivation of muscle tissue, in: Growth, Nutrition and Metabolism of Cells in Culture ,Vol. 2 (G. H. Rothblat and V. J. Cristofalo, eds.), pp. 67–130, Academic Press, New York.Google Scholar
  17. Hauschka, S. D., and Königsberg, I. R., 1966, The influence of collagen on the development of muscle colonies, Proc. Natl. Acad. Sci. USA 55:119–126.PubMedCrossRefGoogle Scholar
  18. Heasman, J., Hynes, R. O., Swan, A. P., Thomas, V., and Wylie, C. C.,1981, Primordial germ cells of Xenopus embryos: The role of fibronectin in their adhesion during migration, Cell 27:437–447.PubMedCrossRefGoogle Scholar
  19. Holtzer, H., 1970, Myogenesis, in: Cell Differentiation (O. Schjeide and J. de Vellis, eds.), pp. 476–503, Van Nostrand Reinhold, New York.Google Scholar
  20. Hynes, R. O., and Yamada, K. M., 1982, Fibronectins: Multifunctional modular glycoproteins, J. Cell. Biol. 95:369–377.PubMedCrossRefGoogle Scholar
  21. John, H. A., and Lawson, H., 1980, The effect of different collagen types used as substrata on myogenesis in tissue culture, Cell Biol. Int. Rep. 4:841–849.PubMedCrossRefGoogle Scholar
  22. Kieny, M. A. ,1983, Cell and tissue interactions in the organogenesis of the avian limb musculature, in: Limb Development and Regeneration, Part B (R. O. Kelley, P. F. Goetinck, and J. A. Macabe, eds.), pp. 293–302, Alan R. Liss, New York.Google Scholar
  23. Kleinman, H. K., McGoodwin, E. C.,Martin, G. R., Klebe, R. J., Fietzek, P. P., and Wooley, D. E., 1978, Localization of the binding sites for cell attachment in the a1I) chain of collagen, J. BioL Chem. 253:5642–5646.PubMedGoogle Scholar
  24. Konigsberg, I. R., 1965, Aspects of cytodifferentiation of skeletal muscle, in: Organogenesis (R. L. DeHaan and H. Ursprung, eds.), pp. 337–358, Holt, Rinehart and Winston. New York.Google Scholar
  25. Konigsberg, I. R., 1979, Skeletal myoblasts in culture, Methods Enzymoi. 58:511–527.CrossRefGoogle Scholar
  26. Linkhart, T. A., Clegg, C. H., Lim, R. W., Merrill, G. F., Chamberlain, J. S., and Hauschka, S. D., 1982, Control of mouse myoblast commitment to terminal differentiation by mitogens, in: Muscle Development: Molecular and CeJiuiar Control (M. L. Pearson and H. F. Epstein, eds.), pp. 377–382, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  27. Monod, J., 1970, Le Hasard et la Necessité: Essai sur la Philosophie Natureile de la Biologie Moderne ,Editions du SeuiL Paris.Google Scholar
  28. Newgreen, D. F., Gibbons, I. L., Sauter, J., Wallenfels, B., and Wutz, R., 1982, Ultrastructural and tissue-culture studies on the role of fibronectin, collagen, and glycosoaminoglycans in the migration of neural crest cells in the fowl embryo, Cell Tissue Res. 221:521–549.PubMedCrossRefGoogle Scholar
  29. Pearson, M. L., 1980, Muscle differentiation in cell culture: A problem in somatic and molecular genetics, in: The Molecular Genetics of Development (T. Leighton and W. F. Loomis, eds.), pp. 361–418, Academic Press, New York.Google Scholar
  30. Pearson, M. L., and Epstein, H. F. (eds.), 1982, Muscle Development, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  31. Pierschbacher, M., Hayman, E. G., and Ruoslahti, E., 1984, Variants of the cell recognition site of fibronectin that retain attachment-promoting activity, Proc. Natl. Acad. Sci. USA 81:5985–5988.PubMedCrossRefGoogle Scholar
  32. Podleski, T. R., Greenberg, I., Schlessinger, J., and Yamada, K. M., 1979, Fibronectin delays the fusion of L-6 myoblasts, Exp. Cell Res. 122:317–326.PubMedCrossRefGoogle Scholar
  33. Puri, E. C., and Turner, D. C., 1978, Serum-free medium allows chicken myogenic cells to be cultivated in suspension and separated from attached fibroblasts, Exp. Cell Res. 115:159–173.PubMedCrossRefGoogle Scholar
  34. Puri, E. C.,Chiquet, M., and Turner, D. C., 1979, Fibronectin-independent myoblast fusion in suspension cultures, Bioch. Biophys. Res. Commun. 90:883–889.CrossRefGoogle Scholar
  35. Rovasio, R. A., Delouvée, A ., Yamada, K. M., Timpl, R., and Thiery, J. P., 1983, Neural crest cell migration: Requirements for exogenous fibronectin and high cell density, J. Cell Biol. 96:462–473.PubMedCrossRefGoogle Scholar
  36. Rutz, R., and Hauschka, S., 1982, Clonal analysis of vertebrate myogenesis. VII. Heritability of muscle colony type through sequential subclonal passages in vitro, Dev. Biol. 91:103–110.PubMedCrossRefGoogle Scholar
  37. Shellswell, G. B., 1980, Cellular events in the early development of skeletal muscles, in: Development in Mammals, Vol. 4 (M. H. Johnson, ed.), pp. 137–159, Elsevier, Amsterdam.Google Scholar
  38. Steinberg, M. S., and Poole, T. J., 1982, Cellular adhesive differentials as determinants of morhogenetic movements and organ segregation, in: Developmental Order: Its Origin and Regulation (S. Subtelny and P. B. Green, eds.), pp. 351–378, Alan R. Liss, New York.Google Scholar
  39. Toole, B. P., and Underhill, C. B., 1983, Regulation of morphogenesis by the pericellular matrix, in: Cell Interactions and Development: Molecular Mechanisms (K. M. Yamada, ed.), pp. 203–230, Wiley, New York.Google Scholar
  40. Turner, D. C., 1978, Differentiation in cultures of chick skeletal muscle cells. The postmitotic fusion-capable myoblast as a distinct cell type, Differentiation 10:81–93.PubMedCrossRefGoogle Scholar
  41. Turner, D. C., and Carbonetto, S. T., 1984, Model systems for studying the functions of extracellular matrix molecules in muscle development, Exp. Biol. Med. 9:72–79.Google Scholar
  42. Turner, D. C.,Gmiir, R., Lebherz, H. G., Siegrist, M., Wallimann, T., and Eppenberger, H. M., 1976, Differentiation in cultures of chick skeletal muscle cells. II Phosphorylase histochemistry and fluorescent antibody staining for creatine kinase and aldolase, Dev. Biol. 48:284–307.PubMedCrossRefGoogle Scholar
  43. Turner, D. C.,Lawton, J., Dollenmeier, P., Ehrismann, R., and Chiquet, M., 1983, Guidance of myogenic cell migration by oriented deposits of fibronectin, Dev. Biol. 95:497–504.PubMedCrossRefGoogle Scholar
  44. Weiss, P., 1941, Nerve patterns: The mechanics of nerve growth, Growth 5:163–203.Google Scholar
  45. Yamada, K. M., 1983, Fibronectin in cell interactions, in: Cell Interactions and Development: Molecular Mechanisms (K. M. Yamada, ed.), pp. 231–249, Wiley, New York.Google Scholar
  46. Zwilling, E., 1968, Morphogenese phases in development, Dev. Biol. 2:184–207.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • David C. Turner
    • 1
  1. 1.Department of BiochemistryState University of New York Upstate Medical CenterSyracuseUSA

Personalised recommendations