Metabolism of Carbohydrates

  • Kurt Jungermann
  • Norbert Katz


The liver can be regarded as the center of intermediary metabolism of the organism. It removes glucose if in excess, as after a normal carbohydrate-rich meal, via glycogen synthesis and glycolysis plus liponeogenesis, and it liberates glucose if needed, as between meals, via glycogen degradation and gluconeo-genesis. It alone produces ketone bodies and has a major role in lipoprotein metabolism (see Chapter 10). The liver detoxifies ammonia and amino acid nitrogen by the synthesis of urea and glutamine (see Chapter 11). The major pathways of energy production are the β-oxidation of fatty acids and the degradation of amino acids. This chapter first reviews how the liver functions as a glucostat in different dietary situations. It then briefly summarizes the regulation of carbohydrate metabolism by the extracellular levels of substrates and hormones, and by the hepatic nerves, and finally shows how hepatocyte heterogeneity might be involved in regulation.


Pyruvate Kinase Glycogen Synthesis Glycogen Phosphorylase Glycogen Metabolism Perivenous Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cahill, G. F., Morliss, E. B., and Aoki, T. T., 1970, Fat and nitrogen metabolism in fasting man, B. Jeanrenaud and D. Hepp, eds., in: Adipose Tissue: Regulation and Functions pp. 181–185, Thieme, Stuttgart.Google Scholar
  2. 2.
    Jungermann, K., and Möhler, H., 1980, Biochemie, Springer-Verlag, Heidelberg, pp. 168–172 and 242-251.CrossRefGoogle Scholar
  3. 3.
    Felig, P., Wahren, J., and Hendler, R., 1975, Influence of oral glucose ingestion on splanchnic glucose and gluconeogenic substrate metabolism in man, Diabetes 24: 468–475.PubMedCrossRefGoogle Scholar
  4. 4.
    Felig, P., and Sherwin, R., 1976, Carbohydrate homeostasis, liver and diabetes, in: Progress in Liver Diseases, Vol. 5, H. Popper, and F. Schaffner, eds., pp. 149–171, Grune & Stratton, New York.Google Scholar
  5. 5.
    Hultman, E., and Nilsson, L. H., 1971, Liver glycogen in man: Effect of different diets and muscular exercise, Adv. Exp. Med. Biol. 11: 143–151.Google Scholar
  6. 6.
    Hultman, E., Bergstrom, J., and Roch-Norlund, A. E., 1971, Glycogen storage in human skeletal muscle, Adv. Exp. Med. Biol. 11: 273–288.Google Scholar
  7. 7.
    Saltin, B., and Karlsson, J., 1971, Muscle glycogen utilization during work of different intensities, Adv. Exp. Med. Biol. 11: 189–199.Google Scholar
  8. 8.
    Froberg, S., Carlson, L., and Ekelund, L., 1971, Local lipid stores and exercise, Adv. Exp. Med. Biol. 11: 307–313.Google Scholar
  9. 9.
    Hed, R., Nygren, A., Röjdmark, R., Sundblad, L., and Wiechel, K. L. 1979, Insulin in the portal, hepatic and peripheral venous blood after glucose, tolbutamide and glipizide stimulation, Acta Med. Scand. 205: 221–225.PubMedCrossRefGoogle Scholar
  10. 10.
    Strubbe, J. H., and Steffens, A. B., 1977, Blood glucose levels in portal and peripheral circulation and their relation to food intake in the rat, Physiol. Behav. 19: 303–107.PubMedCrossRefGoogle Scholar
  11. 11.
    Unger, R. H., 1971, Pancreatic glucagon in health and disease, Adv. Intern. Med. 17: 265–273.PubMedGoogle Scholar
  12. 12.
    Whitton, P. D., 1981, Hormonal regulation of glycogenolysis, in: Short-Term Regulation of Liver Metabolism, (L. Hue and G. Van de Werve, eds.), pp. 45–62, Elsevier North-Holland, Amsterdam.Google Scholar
  13. 13.
    Lautt, W. W., 1980, Hepatic nerves, Can J. Physiol. Pharmacol. 58: 105–123.PubMedCrossRefGoogle Scholar
  14. 14.
    Forssmann, W. G., 1980, Introduction and historical remarks on the innervation of the liver, in: Communications of Liver Cells (H. Popper, L. Bianchi, F. Gudat, and W. Reutter, eds.), pp. 109–114, MTP Press, Lancaster.Google Scholar
  15. 15.
    McCuskey, R. S., 1980, Intrahepatic distribution of nerves: A review, in: Communications of Liver Cells (H. Popper, L. Bianchi, F. Gudat, and W. Reutter, eds.), pp. 115–120, MTP Press, Lancaster.Google Scholar
  16. 16.
    Shimazu, T., 1981, Central nervous system regulation of liver and adipose tissue metabolism, Diabetologia 20: 343–356.PubMedCrossRefGoogle Scholar
  17. 17.
    Niijima, A., 1979, Control of liver function and neuroendocrine regulation of blood glucose levels, in: Integrative Functions of the Autonomic Nervous System (C. McC. Brooks, K. Koizumi, and A. Sato, eds.), pp. 68–83, Elsevier, Amsterdam.Google Scholar
  18. 18.
    Hue, L., Bontemps, F., and Hers, H. G., 1975, The effect of glucose and of potassium ions on the two forms of glycogen phosphorylase and of glycogen synthetase, Biochem. J. 152: 105–114.PubMedGoogle Scholar
  19. 19.
    Witters, L. A., and Avruch, J., 1978, Insulin regulation of hepatic glycogen synthase and phosphorylase, Biochemistry 17: 406–410.PubMedCrossRefGoogle Scholar
  20. 20.
    Hue, L., Feliu, J. E., and Hers, H. G., 1978, Control of gluconeogenesis and of enzymes of glycogen metabolism in isolated rat hepatocytes, Biochem. J. 176: 791–797.PubMedGoogle Scholar
  21. 21.
    Hue, L., and Van de Werve, G., 1981, Short-term Regulation of Liver Metabolism, pp. 453–456, Elsevier North-Holland, Amsterdam.Google Scholar
  22. 22.
    Nyfeler, F., Fasel, P., and Walter, P., 1981, Short-term stimulation of net glycogen production by insulin in rat hepatocytes, Biochim. Biophys. Acta 675: 17–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Beynen, A. C., and Geelen, M. J. H., 1981, Control of glycogen metabolism by insulin in isolated hepatocytes, Horm. Metab. Res. 13: 376–378.PubMedCrossRefGoogle Scholar
  24. 24.
    Hartmann, H., Beckh, K., and Jungermann, K., 1982, Direct control of glycogen metabolism in the perfused rat liver by the sympathetic innervation, Eur. J. Biochem. 123: 521–526.PubMedCrossRefGoogle Scholar
  25. 25.
    Beckh, K., Hartmann, H., Jungermann, K., and Scholz, R., 1984, Regulation of oxygen consumption in perfused rat liver: Decrease by α-sympathetic nerve stimulation and increase by the α-agonist phenylephrine, Pfluegers Arch. Eur. J. Physiol. 401: 104–106.CrossRefGoogle Scholar
  26. 26.
    Ji, S., Beckh, K., and Jungermann, K., 1984, Regulation of oxygen consumption and micro-circulation by α-sympathetic nerves in isolated perfused rat liver, FEBS Lett. 167: 117–122.PubMedCrossRefGoogle Scholar
  27. 27.
    Beckh, K., Balks, H. J., and Jungermann, K., 1982, Activation of glycogenolysis and nor-epinephrine overflow in the perfused rat liver during repetitive nerve stimulation, FEBS Lett. 149: 261–265.PubMedCrossRefGoogle Scholar
  28. 28.
    Beckh, K., Hartmann, H., and Jungermann, K., 1982, Modulation by insulin and glucagon of the activation of glycogenolysis by perivascular nerve stimulation in the perfused rat liver, FEBS Lett. 146: 69–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Probst, I., Schwartz, P., and Jungermann, K., 1982, Induction in primary culture of “gluco-neogenic” and “glycolytic” hepatocytes resembling periportal and perivenous cells, Eur. J. Biochem. 126: 271–278.PubMedCrossRefGoogle Scholar
  30. 30.
    Bontemps, F., Hue, L., and Hers, H. G., 1976, Phosphorylation of glucose in isolated rat hepatocytes, Biochem. J. 174: 603–611.Google Scholar
  31. 31.
    Hers, H. G., and van Schaftingen, E., 1982, Fructose-2, 6-bisphosphate 2 years after its discovery, Biochem. J. 206: 1–12.PubMedGoogle Scholar
  32. 32.
    Probst, I., and Jungermann, K., 1983, Short-term regulation of glycolysis by insulin and dexamethasone in cultured rat hepatocytes, Eur. J. Biochem. 135: 151–156.PubMedCrossRefGoogle Scholar
  33. 33.
    Powis, G., 1970, Perfusion of rat’s liver with blood: Transmitter overflows and gluconeogenesis, Proc. R. Soc. London Ser. B 174: 503–515.CrossRefGoogle Scholar
  34. 34.
    Novikoff, A.B., 1959, Cell heterogeneity within the hepatic lobule of the rat (staining reactions), J. Histochem. Cytochem. 7: 240–244.PubMedCrossRefGoogle Scholar
  35. 35.
    Rappaport, A. M., 1960, Betrachtungen zur Pathophysiologie der Leberstruktur, Klin. Wo-chenschr. 38: 561–577.CrossRefGoogle Scholar
  36. 36.
    Jungermann, K., and Sasse, D., 1978, Heterogeneity of liver parenchymal cells, Trends Biochem. Sci. 3: 198–202.CrossRefGoogle Scholar
  37. 37.
    Gumucio, J. J., and Miller, D. L., 1981, Functional implications of liver cell heterogeneity, Gastroenterology 80: 393–403.PubMedGoogle Scholar
  38. 38.
    Jungermann, K., and Katz, N., 1982, Functional hepatocellular heterogeneity, Hepatology 2: 385–395.PubMedCrossRefGoogle Scholar
  39. 39.
    Katz, N., and Jungermann, K., 1976, Autoregulatory shift from fructolysis to lactate gluco-neogenesis in rat hepatocyte suspensions: The problem of metabolic zonation of liver parenchyma, Hoppe-Seyler’s Z. Physiol. Chem. 357: 359–375.PubMedCrossRefGoogle Scholar
  40. 40.
    Loud, A. V., 1968, Quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells, J. Cell. Biol. 37: 27–46.PubMedCrossRefGoogle Scholar
  41. 41.
    Wimmer, M., and Pette, D., 1979, Microphotometric studies on intraacinar enzyme distribution in rat liver, Histochemistry 64: 23–33.PubMedCrossRefGoogle Scholar
  42. 42.
    Sasse, D., 1975, Dynamics of liver glycogen, Histochemistry 4: 237–254.CrossRefGoogle Scholar
  43. 43.
    Teutsch, H. F., 1981, Chemomorphology of liver parenchyma, Prog. Histochem. Cytochem. 14(3): 1–92.PubMedCrossRefGoogle Scholar
  44. 44.
    Richards, W. L., and Potter, V. R., 1980, Scanning microdensitometry of glycogen zonation in livers of rats adapted to a controlled feeding schedule and to 30, 60 or 90% casein diets, Am. J. Anat. 157: 71–85.PubMedCrossRefGoogle Scholar
  45. 45.
    Katz, N., Teutsch, H. F., Jungermann, K., and Sasse, D., 1977, Heterogeneous reciprocal localization of fructose-1, 6-bisphosphatase and glucokinase in microdissected periportal and perivenous rat liver tissue, FEBS Lett. 83: 272–276.PubMedCrossRefGoogle Scholar
  46. 46.
    Trus, M., Zawalich, H., Gaynor, D., and Matschinsky, F., 1980, Hexokinase and glucokinase distribution in the liver lobule, J. Histochem. Cytochem. 28: 579–581.PubMedCrossRefGoogle Scholar
  47. 47.
    Fischer, W., Ick, M., and Katz, N., 1982, Reciprocal distribution of hexokinase and glucokinase in periportal and perivenous rat liver tissue, Hoppe-Seyler’s Z. Physiol. Chem. 363: 375–380.PubMedCrossRefGoogle Scholar
  48. 48.
    Guder, W. G., and Schmidt, U., 1976, Liver cell heterogeneity: The distribution of pyruvate kinase and phosphoenolpyruvate carboxykinase (GTP) in the lobule of fed and starved rats, Hoppe-Seyler’s Z. Physiol. Chem. 357: 1793–1800.PubMedCrossRefGoogle Scholar
  49. 49.
    Zierz, S., Katz, N., and Jungermann, K., 1983, Distribution of pyruvate kinase type L and M2 in microdissected periportal and perivenous rat liver tissue with different dietary states, Hoppe-Seyler’s Z. Physiol. Chem. 364: 1447–1453.PubMedCrossRefGoogle Scholar
  50. 50.
    Katz, N. R., Fischer, W., and Ick, M., 1983, Heterogeneous distribution of ATP citrate lyase in rat-liver parenchyma, Eur. J. Biochem. 130: 297–301.PubMedCrossRefGoogle Scholar
  51. 51.
    Katz, N. R., Fischer, W., and Giffhorn, S., 1983, Distribution of enzymes of fatty acid and ketone body metabolism in periportal and perivenous rat liver tissue, Eur. J. Biochem. 135: 103–107.PubMedCrossRefGoogle Scholar
  52. 52.
    Morrison, G. R., Brock, F. E., Karl, I. E., and Shank, R. E., 1965, Quantitative analysis of regenerating and degenerating areas within the lobule of the carbon tetrachloride-injured liver, Arch. Biochem. Biophys. 111: 448–464.PubMedCrossRefGoogle Scholar
  53. 53.
    Teutsch, H. F., and Rieder, R., 1979, NADP-dependent dehydrogenases in rat liver parenchyma II, Histochemistry 60: 43–52.PubMedCrossRefGoogle Scholar
  54. 54.
    Rieder, R., 1981, NADP-dependent dehydrogenases in rat liver parenchyma III, Histochemistry 72: 579–615.PubMedCrossRefGoogle Scholar
  55. 55.
    Andersen, B., Nath, A., and Jungermann, K., 1982, Heterogeneous distribution of phosphoenolpyruvate carboxykinase in rat liver parenchyma, isolated and cultured hepatocytes, Eur. J. Cell. Biol. 28: 47–53.PubMedGoogle Scholar
  56. 56.
    Schmidt, U., Schmid, H., and Guder, W., 1978, Liver cell heterogeneity: The distribution of fructose-bisphosphatase in fed and fasted rats and in man, Hoppe-Seyler’s Z. Physiol. Chem. 359: 193–198.PubMedGoogle Scholar
  57. 57.
    Katz, N., Teutsch, H. F., Sasse, D., and Jungermann, K., 1977, Heterogeneous distribution of glucose-6-phosphatase in microdissected periportal and perivenous rat liver tissue, FEBS Lett. b: 226–230.CrossRefGoogle Scholar
  58. 58.
    Teutsch, H. F., 1978, Quantitative determination of G6Pase activity in histochemical defined zones of the liver acinus, Histochemistry 58: 281–288.PubMedCrossRefGoogle Scholar
  59. 59.
    Shank, R. E., Morrison, G., Cheng, C. H., Karl, I., and Schwartz, R., 1959, Cell heterogeneity within the hepatic lobule (quantitative histochemistry), J. Histochem. Cytochem. 7: 237–239.PubMedCrossRefGoogle Scholar
  60. 60.
    Welsh, F. A., 1972, Changes in distribution of enzymes within the liver lobule during adaptive increase, J. Histochem. Cytochem. 20: 107–111.PubMedCrossRefGoogle Scholar
  61. 61.
    Guder, W. G., and Ross, B. D., 1982, Heterogeneity and compartmentation in the kidney, in: Metabolic Compartmentation (H. Sies, ed.), pp. 363–409, Academic Press, London.Google Scholar
  62. 62.
    Balks, H. J., and Jungermann, K., 1984, Regulation of the peripheral insulin/glucagon ratio by the liver, Eur. J. Biochem. 141: 645–650.PubMedCrossRefGoogle Scholar
  63. 63.
    Katz, N., Teutsch, H., Jungermann, K., and Sasse, D., 1976, Perinatal development of the metabolic zonation of hamster liver parenchyma, FEBS Lett. 69: 23–28.PubMedCrossRefGoogle Scholar
  64. 64.
    Andersen, B., Zierz, S., and Jungermann, K., 1983, Perinatal development of the distribution of phosphoenolpyruvate carboxykinase and succinate dehydrogenase in rat liver parenchyma, Eur. J. Cell Biol. 30: 126–131.PubMedGoogle Scholar
  65. 65.
    Brinkmann, A., Katz, N., Sasse, D., and Jungermann, K., 1978, Increase of the gluconeogenic and decrease of the glycolytic capacity of rat liver with a change of the metabolic zonation after partial hepatectomy, Hoppe-Seyler’s Z. Physiol. Chem. 359: 1561–1571.PubMedCrossRefGoogle Scholar
  66. 66.
    Andersen, B., Zierz, S., and Jungermann, K., 1984, Alteration in zonation of succinate dehydrogenase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in regenerating rat liver, Histochemistry 80: 97–101.PubMedCrossRefGoogle Scholar
  67. 67.
    Nuber, R., Teutsch, H. F., and Sasse, D., 1980, Metabolic zonation in thioacetamide-induced liver cirrhosis, Histochemistry 69: 277–288.PubMedCrossRefGoogle Scholar
  68. 68.
    Jungermann, K., Heilbronn, R., Katz, N., and Sasse, D., 1982, The glucose/glucose-6-phos-phate cycle in the periportal and perivenous zone of rat liver, Eur. J. Biochem. 123: 429–436.PubMedCrossRefGoogle Scholar
  69. 69.
    Newsholme, E. A., and Start, C., 1973, Regulation in Metabolism, pp. 71–76, 121-126, and 248, Wiley, London.Google Scholar
  70. 70.
    Wölfle, D., Schmidt, H., and Jungermann, K., 1983, Short-term modulation of glycogen metabolism, glycolysis and gluconeogenesis by physiological oxygen concentrations in hepa-tocyte cultures, Eur. J. Biochem. 135: 405–412.PubMedCrossRefGoogle Scholar
  71. 71.
    Matsumura, T., and Thurman, R. G., 1984, Predominance of glycolysis in pericentral regions of the liver lobule, Eur. J. Biochem. 140: 229–234.PubMedCrossRefGoogle Scholar
  72. 72.
    Matsumura, T., Kashiwagi, T., Meren, H., and Thurman, R. G., 1984, Gluconeogenesis predominates in periportal regions of the liver lobule, Eur. J. Biochem. 144: 409–415.PubMedCrossRefGoogle Scholar
  73. 73.
    Miethke, H., Wittig, B., Nath, A., Zierz, S., and Jungermann, K., 1985, Metabolic zonation in liver of diabetic rats, Biol. Chem. Hoppe-Seyler 366: 493–501.PubMedCrossRefGoogle Scholar
  74. 74.
    Zierz, S., and Jungermann, L., 1984, Alteration with dietary state of the activity and zonal distribution of adenylate cyclase stimulated by glucagon, fluoride and forskolin in microdissected rat liver tissue, Eur. J. Biochem. 145: 499–504.PubMedCrossRefGoogle Scholar
  75. 75.
    Wölfle, D., and Jungermann, K., 1985, Long-term effects of physiological oxygen concentrations on glycolysis and gluconeogenesis in hepatocyte cultures., Eur. J. Biochem. 151: 299–303.PubMedCrossRefGoogle Scholar
  76. 76.
    Kate, J., and McGarry, J. D., 1984, The glucose paradox. Is glucose a substrate for liver metabolism? J. Clin. Invest. 74: 1901–1909.CrossRefGoogle Scholar
  77. 77.
    Pilkis, S. J., Regen, D. M., Claus, T. H., and Cherrington, A. D., 1985, Role of hepatic glycolysis and gluconeogenesis in glycogen synthesis., Bioassays 2: 273–276.CrossRefGoogle Scholar
  78. 78.
    Jungermann, K., Katz, N., Teutsch, H., and Sasse, D., 1977, Possible metabolic zonation of liver parendyma into glucogenic and glycolytic hepatocytes, in: Alcohol and Aldehyde Metabolizing Systems (R. G. Thurman, J. R. Williamson, H. Drott, and B. Chance, eds.), pp. 65–76, Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Kurt Jungermann
    • 1
  • Norbert Katz
    • 1
  1. 1.Institut für BiochemieUniversität GöttingenGöttingenFederal Republic of Germany

Personalised recommendations