Redox Scanning in the Study of Metabolic Zonation of Liver

  • Bjørn Quistorff
  • Britton Chance


The metabolic activity of an organ, e.g., the liver, will create gradients of oxygen, substrates, hormones, and products of metabolism along the capillaries. These concentration gradients will tend to subdivide the organ into zones of different metabolic activity at the capillary level. In many organs, e.g., muscles and brain, capillaries seem to be organized so as to minimize the zonation effect of the longitudinal capillary gradients, since adjacent parallel capillaries are perfused in opposite directions.


Perfuse Liver Pyridine Nucleotide Control Liver Perivenous Area Tissue Fluorescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rappaport, A. M., 1980, Hepatic blood flow: Morphologic aspects and physiologic regulation, in: Liver and Biliary Tract Physiology I, Vol. 21 (N. B. Javitt, ed.), pp. 1–63, Int. Rev. Physiol., University Park Press, Baltimore.Google Scholar
  2. 2.
    Jungermann, K., and Katz, N., 1982, Functional hepatocellular heterogeneity, Hepatology 2(3): 385–395.PubMedCrossRefGoogle Scholar
  3. 3.
    Quistorff, B., 1983, The use of a hepatocyte column in the study of metabolic zonation in the liver, in: Isolation, Characterization, and Use of Hepatocytes (R. A. Harris and N. W. Cornell, eds.), pp. 131–137, Elsevier, New York.Google Scholar
  4. 4.
    Quistorff, B., Grunnet, N., and Cornell, N. W., 1985, Digitonin perfusion of rat liver: A new approach in the study of intraacinar and intracellular compartmentation in the liver, Biochem. J. 226: 289–297.PubMedGoogle Scholar
  5. 4a.
    Quistorff, B., 1985, Gluconeogenesis in periportal and perivenous hepatocytes of rat liver, isolated by a new high-yield, digitonin-collagenase perfusion technique, Biochem. J. 229: 221–226.PubMedGoogle Scholar
  6. 5.
    Haselgrove, J. C., Subramanian, V. H., Leigh, J. S., Jr., Gyulai, L., and Chance, B., 1983, In vivo one-dimensional imaging of phosphorus metabolites by phosphorus-31 nuclear magnetic resonance, Science 220: 1170–1173.PubMedCrossRefGoogle Scholar
  7. 6.
    Quistorff, B., and Chance, B., 1977, Two-and three dimensional analysis on brain oxygen delivery, in: Oxygen and Physiological Function (F. F. Jöbsis, ed.), pp. 100-110, Professional Information Library, Dallas.Google Scholar
  8. 7.
    Quistorff, B., Haselgrove, J. C., and Chance, B., 1985, High spatial resolution read-out of 3-D metabolic organ structure: An automated, low-temperature redox ratio scanning instrument, Anal. Biochem. 148: 389–400.PubMedCrossRefGoogle Scholar
  9. 8.
    Williamson, D. H., Lund, P., and Krebs, H. A. 1967, The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver, Biochem. J. 103: 514–527.PubMedGoogle Scholar
  10. 9.
    Sies, H., 1982, Nicotinamide nucleotide compartmentation, in: Metabolic Compartmentation (H. Sies, ed.), pp. 205–231, Academic Press, London.Google Scholar
  11. 10.
    Bücher, T., Brauser, B., Conze, A., Klein, F., Langguth, O., and Sies, H., 1972, State of oxidation-reduction and state of binding in cytosolic NADH-systems as disclosed by equilibration with extracellular lactate/pyruvate in hemoglobin-free perfused rat liver, Eur. J. Biochem. 27: 301–317.PubMedCrossRefGoogle Scholar
  12. 11.
    Sies, H., 1977, Redox compartmentation: A survey with emphasis on current problems, in: Alcohol and Aldehyde Metabolizing Systems, Vol. 3 (R. G. Thurman, J. R. Williamson, H. Drott, and B. Chance, eds.), pp. 47–64, Academic Press, New York.Google Scholar
  13. 12.
    Krebs, H. A., 1966, The redox state of NAD in the cytoplasm and mitochondria of rat liver, Adv. Enzyme. Regul. 5: 409–437.CrossRefGoogle Scholar
  14. 13.
    Hoek, J. B., and Ernster, L., 1974, Mitochondrial transhydrogenase and the regulation of cytosolic reducing power, in: Alcohol and Aldehyde Metabolizing Systems, Vol. 1 (R. G. Thurman, Y. Yonetani, J. R. Williamson, and B. Chance, eds.), pp. 351–364. Academic Press, London.Google Scholar
  15. 14.
    Chance, B., and Jöbsis, F. F., 1959, Changes in fluorescence in a frog sartorius muscle following a twitch, Nature (London) 4681: 195–197.CrossRefGoogle Scholar
  16. 15.
    Chance, B., Cohen, P., Jöbsis, F. F., and Schoener, B., 1962, Intracellular oxidation-reduction states in vivo, Science 137: 449–508.CrossRefGoogle Scholar
  17. 16.
    Ramirez, J., and Vega, J., 1965, Cambios de la fluorescencia del musculo cardiaco durante la actividad mecanica, Acta Physiol. Lat. Am. 15: 239–240.Google Scholar
  18. 17.
    Welsh, F. A., O’Connor, M. J., and Langfitt, T. W., 1977, Regions of cerebral ischemia located by pyridine nucleotide fluorescence, Science 198: 951–953.PubMedCrossRefGoogle Scholar
  19. 18.
    Barlow, C. H., and Chance, B., 1967, Ischemic areas in perfused rat hearts: Measurement by NADH fluorescence photography, Science 193: 909–910.CrossRefGoogle Scholar
  20. 19.
    Chance, B., Schoener, B., Krejci, K., Rüssmann, W., Wessmann, W., Schnitger, H., and Bücher, T., 1965, Kinetics of fluorescence and metabolite changes in rat liver during a cycle of ischaemia, Biochem. Z. 341: 325–333.Google Scholar
  21. 20.
    Chance, B., and Schoener, B., 1966, Fluorometric studies of flavin component of the respiratory chain, in: Flavins and Flavoproteins (E. C. Slater, ed.), pp. 510–519, Elsevier, Amsterdam.Google Scholar
  22. 21.
    Hassinen, I., and Chance, B., 1968, Oxidation-reduction properties of the mitochondrial flavoprotein chain, Biochem. Biophys. Res. Commun. 31(6): 895–900.PubMedCrossRefGoogle Scholar
  23. 22.
    Chance, B., Mela, L., and Wong, D., 1968, Flavoproteins of the respiratory chain, in: Flavins and Flavoproteins, (K. Yagi, ed.), pp. 107–121, University Park Press, Baltimore.Google Scholar
  24. 23.
    Scholz, R., Thurman, R. G., Williamson, J. R., Chance, B., and Bücher, T., 1969, Flavin and pyridine nucleotide oxydation-reduction changes in perfused rat liver: Anoxia and sub-cellular localization of fluorescent flavoproteins, J. Biol. Chem. 244(9): 2317–2324.PubMedGoogle Scholar
  25. 24.
    Chance, B., Schoener, B., Oshino, R., Itshak, F., and Nakase, Y., 1979, Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples, J. Biol. Chem. 254: 4764–4771.PubMedGoogle Scholar
  26. 25.
    Chance, B., Williamson, J. R., Jamieson, D., and Schoener, B., 1965, Properties and kinetics of reduced pyridine nucleotide fluorescence of the isolated in vivo rat heart, Biochem. Z. 341: 357–377.Google Scholar
  27. 26.
    Sies, H., Häussinger, D., and Grosskopf, M., 1974, Mitochondrial nicotinamide nucleotide systems: Ammonium chloride responses in hemoglobin-free perfused liver, Hoppe-Seyler’s Z. Physiol. Chem. 355: 305–320.PubMedCrossRefGoogle Scholar
  28. 27.
    Avi-Dor, Y., Olson, J. M., Doherty, M. D., and Kaplan, N. O., 1962, Fluorescence of pyridine nucleotides in mitochondria, J. Biol. Chem. 237(7): 2377–2383.Google Scholar
  29. 28.
    Boyer, P. D., and Theorell, H., 1956, The changes in reduced NAD (NADH) fluorescence upon combination with liver ADH, Acta Chem. Scand. 10: 447–450.CrossRefGoogle Scholar
  30. 29.
    Velick, S. F., 1958, Fluorescence spectra and polarization of glyceraldehyde-3-P-and lactic dehydrogenase coenzyme complexes, J. Biol. Chem. 233(6): 1455–1467.Google Scholar
  31. 30.
    Chance, B., and Baltschefsky, H., 1958, Respiratory enzymes in oxidative phosphorylation. VII. Binding of intramitochondrial reduced NAD(P), J. Biol. Chem. 233(3): 736–739.PubMedGoogle Scholar
  32. 31.
    Galeotti, T., Rossum, D. V. van, Mayer, D. H., and Chance, B., 1970, On the fluorescence of NAD(P)H in whole cell preparation of tumours and normal tissues, Eur. J. Biochem. 17: 485–496.PubMedCrossRefGoogle Scholar
  33. 32.
    Thorell, B., and Chance, B., 1960, Microspectrography of respiratory enzymes within the single cell under different metabolic conditions, Exp. Cell Res. 20: 43–55.PubMedCrossRefGoogle Scholar
  34. 33.
    Jöbsis, F. F., and Duffield, J. C., 1967, Oxidative and glycolytic recovery metabolism in muscle, J. Gen. Physiol. 50: 10109–1047.CrossRefGoogle Scholar
  35. 34.
    Chapman, J. B., 1972, Fluorometric studies of oxidative metabolism in isolated papillary muscle of the rabbit, J. Gen. Physiol. 59: 135–154.PubMedCrossRefGoogle Scholar
  36. 35.
    Williamson, J. R., 1965, Glycolytic control mechanisms, J. Biol. Chem. 240: 2308–2318.PubMedGoogle Scholar
  37. 36.
    O’Connor, M. J., Welsh, F., Komarnicky, L., Davis, T., Stevens, J., Lewis, D., and Herman, C., 1977, Origin of labile NADH tissue fluorescence, in: Oxygen and Physiological Function (F. F. Jöbsis, ed.), pp. 90-99, Professional Information Library, Dallas.Google Scholar
  38. 37.
    Aubert, X., Chance, B., and Keynes, R. D., 1964, Optical studies of biochemical events in the electric organ of Electrophorus, Proc. R. Soc. London Ser. B. 160: 211–233.CrossRefGoogle Scholar
  39. 38.
    Haselgrove, J. C., Barlow, C. H., and Chance, B., 1980, The 3-D distribution of metabolic states in the gerbil brain during the course of spreading depression, in: Cerebral Metabolism and Neuronal Function (J. V. Passonneau, R. A. Hawkins, W. D. Lust, and F. A. Welsh, eds.), pp. 72–76, Williams & Wilkins, Baltimore.Google Scholar
  40. 39.
    Quistorff, B., and Chance, B., 1982, 3-Dimensional recording of metabolic structure of rat liver: Evidence for a dynamic spatial ordering of liver metabolism, in: Alcohol and Alcohol Metabolism: First Symposium on Alcohol (J. Wadstein, ed.), pp. 21–39, Ferrosan, Malmö, Sweden.Google Scholar
  41. 40.
    Chance, B., and Quistorff, B., 1978, Study of tissue oxygen gradients by single and multiple indicators, in: Oxygen Transport to Tissue — III (I. A. Silver, M. Erecinska, and H. I. Bicher, eds.), pp. 331–338, Plenum Press, New York.Google Scholar
  42. 40a.
    Erecinska, M., and Chance, B., 1972, Studies on the electron transport chain at subzero temperatures: Electron transport at site III. Arch. Biochem. Biophys. 151: 304–315.PubMedCrossRefGoogle Scholar
  43. 41.
    Chance, B., and Williams, G. R., 1957, The respiratory chain and oxidative phosphorylation, Methods Enzymol. 17: 65–134.Google Scholar
  44. 42.
    Quistorff, B., and Chance, B., 1980, Simple techniques for freeze-clamping and for cutting and milling frozen tissue at low temperature for the purpose of two-or three-dimensional metabolic studies in vivo, Anal. Biochem. 108: 237–248.PubMedCrossRefGoogle Scholar
  45. 43.
    Ji, S., Chance, B., Nishiki, K., Smith, T., and Rich, T., 1979, Micro-light guide: A new method for measuring tissue fluorescence and reflectance, Am. J. Physiol. 236: C144–C156.PubMedGoogle Scholar
  46. 44.
    Chance, B., Legallais, V., Sorge, J., and Graham, N., 1975, A versatile time-sharing multichannel spectrophotometer, reflectometer, and fluorometer, Anal. Biochem. 66: 498–514.PubMedCrossRefGoogle Scholar
  47. 45.
    Quistorff, B., 1980, Guillotine freeze-clamping of rat brain: Analysis of energy metabolites along the freezing gradient, in: Cerebral Metabolism and Neuronal Function (J. V. Passonneau, R. A. Hawkins, W. D. Lust, and F. A. Welsh, eds.), pp.42–52, Williams & Wilkins, Baltimore.Google Scholar
  48. 46.
    Quistorff, B., and Poulsen, H., 1980, Evaluation of a freeze-clamping technique designed for two-and three-dimensional metabolic studies of rat liver in vivo: Quenching efficiency and effect of clamping on tissue morphology, Anal. Biochem. 108: 249–256.PubMedCrossRefGoogle Scholar
  49. 47.
    Williamson, J. R., Scholtz, R., Browning, E. T., Thurman, R. G., and Fukami, M. H., 1969, Metabolic effects of ethanol in the perfused liver, J. Biol. Chem. 244(18): 5044–5054.PubMedGoogle Scholar
  50. 48.
    Quistorff, B., and Chance, B., 1977, Three-dimensional mapping of metabolic state of rat liver: Effects of high and low alcohol concentrations, Hoppe-Seyler’s Z. Physiol. Chem. 358: 1261.Google Scholar
  51. 49.
    Häussinger, D., 1983, Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intracellular glutamine cycle during ureogenesis in perfused rat liver, Eur. J. Biochem. 133: 269–275.PubMedCrossRefGoogle Scholar
  52. 50.
    Kashiwagi, T., Ji, S., Lemasters, J. J., and Thurman, R. G., 1981, Rates of alcohol dehy-drogenase-dependent ethanol metabolism in periportal and pericentral regions of the perfused rat liver, Mol. Pharmacol. 21: 438–443.Google Scholar
  53. 51.
    Ji, S., Lemasters, J. J., and Thurman, R. G., 1980, A non-invasive method to study metabolic events within sublobular regions of hemoglobin-free perfused liver, FEBS Lett. 113(1): 37–41.PubMedCrossRefGoogle Scholar
  54. 52.
    Jöbsis, F. F., and Lamanna, J. C., 1978, Kinetic aspects of intracellular redox reactions, in: Extrapulmonary Manifestations of Respiratory Disease (E. Robin, ed.), pp. 63–106, Marcel Dekker, New York.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Bjørn Quistorff
    • 1
  • Britton Chance
    • 2
  1. 1.Department of BiochemistryUniversity of CopenhagenCopenhagenDenmark
  2. 2.The Johnson Research FoundationUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations