Advertisement

New Micromethods for Studying Sublobular Structure and Function in the Isolated, Perfused Rat Liver

  • John J. Lemasters
  • Sungchul Ji
  • Ronald G. Thurman

Abstract

Periportal and pericentral (centrilobular) regions of the liver lobule differ with respect to ultrastructure, metabolism, and pathology.1–3 These differences are most striking in the response of the liver to various hepatotoxins.4 Some toxins (e.g., ethanol and carbon tetrachloride) cause selective damage to centrilobular areas, while others (e.g., allyl alcohol) injure periportal regions predominantly. In part, these differences among various regions of the liver lobule may reflect gradients of oxygen, metabolites, and hormones that are established as blood flows through the living lobule. They may also result from intrinsic differences in enzymes, cofactors, and metabolic intermediates in different regions of the liver lobule. A better understanding of hepatic function in health and disease requires that more knowledge about microheterogeneity within the liver lobule be obtained.

Keywords

Oxygen Tension Central Vein Liver Lobule Perfuse Liver Allyl Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Loud, A. V., 1968, A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells, J. Cell Biol. 37: 27–46.PubMedCrossRefGoogle Scholar
  2. 2.
    Jungermann, K., and Sasse, D., 1978, Heterogeneity of liver parenchymal cells, Trends Biochem. Sci. 3: 198–202.CrossRefGoogle Scholar
  3. 3.
    MacSween, R. N. M., Anthony, P. P., and Scheuer, P. J., (eds.), 1979, Pathology of the Liver, Churchill Livingstone, Edinburgh.Google Scholar
  4. 4.
    Zimmerman, H. J., 1978, Hepatotoxicity, Appleton-Century-Crofts, New York.Google Scholar
  5. 5.
    Ji, S., Chance, B., Nishiki, K., Smith, T., and Rich, T., 1979, Micro-light guides, a new method for measuring tissue fluorescence and reflectance, Am. J. Physiol. 236: C144–C156.PubMedGoogle Scholar
  6. 6.
    Ji, S., Lemasters, J. J., and Thurman, R. G., 1980, A non-invasive method to study metabolic events within sublobular regions of hemoglobin-free perfused liver, FEBS Lett. 113: 37–41; 114: 349.Google Scholar
  7. 7.
    Zahlten, R. N., Stratman, F. W., Lardy, H. A., 1973, Regulation of glucose synthesis in hormone-sensitive isolated rat hepatocytes, Proc. Natl. Acad. Sci. U.S.A. 70: 3213–3218.PubMedCrossRefGoogle Scholar
  8. 8.
    Ji, S., Lemasters, J. J., Christenson, V., and Thurman, R. G., 1982, Periportal and pericentral pyridine nucleotide fluorescence from the surface of the perfused liver: Evaluation of the hypothesis that chronic treatment with ethanol produces pericentral hypoxia, Proc. Natl. Acad. Sci. U.S.A. 79: 5415–5419.PubMedCrossRefGoogle Scholar
  9. 9.
    Kiernan, F., 1833, The anatomy and physiology of the liver, Philos. Trans. R. Soc. London 123: 711–770.CrossRefGoogle Scholar
  10. 10.
    Mall, F. P., 1906, A study of the structural unit of the liver, Am. J. Anat. 5: 227–308.CrossRefGoogle Scholar
  11. 11.
    Rappaport, A.M., 1976, The microcirculatory acinar concept of normal and pathological hepatic structure, Beitr. Pathol. 157: 215–243.PubMedCrossRefGoogle Scholar
  12. 12.
    Baron, J., Redick, J. A., and Guengerich, F. P., 1978, Immunohistochemical localizations of cytochromes P-450 in rat liver, Life Sci. 23: 2627–2632.PubMedCrossRefGoogle Scholar
  13. 13.
    Gooding, P. E., Chayen, J., Sawyer, B., and Slater, T. F., 1978, Cytochrome P-450 distribution in rat liver and the effect of sodium phenobarbitone administration, Chem.-Biol. Interact. 20: 299–310.PubMedCrossRefGoogle Scholar
  14. 14.
    Sies, H., 1982, Nicotinamide nucleotide compartmentation, in: Metabolic Compartmentation (H. Sies, ed.), pp. 205–231, Academic Press, London.Google Scholar
  15. 15.
    Chance, B., Cohen, P., Jobsis, F., and Schoener, B., 1962, Intracellular oxidation-reduction states in vivo, Science 137: 499–508.PubMedCrossRefGoogle Scholar
  16. 16.
    Lemasters, J. J., Ji, S., and Thurman, R. G., 1981, Centrilobular injury following hypoxia in isolated, perfused rat liver, Science 213: 661–663.PubMedCrossRefGoogle Scholar
  17. 17.
    Kessler, M., Goernandt, L., and Lang, H., 1973, Correlation between oxygen tension in tissue and hemoglobin dissociation curve, in: Oxygen Supply (M. Kessler, D. F. Bruley, L. C. Clark, D. W. Lübbers, L. A. Silver, and J. Strauss, eds.), pp. 156–159, University Park Press, Baltimore.Google Scholar
  18. 18.
    Kessler, M., Höper, J., and Krumme, B. A., 1976, Monitoring of tissue perfusion and cellular function, Anaesthesiology 45: 184–197.CrossRefGoogle Scholar
  19. 19.
    Matsumura, T., and Thurman, R. G., 1983, Measuring rates of O2 uptake in periportal and pericentral regions of the liver lobule: Stop-flow experiments with perfused liver, Am. J. Physiol. 244: G656–659.Google Scholar
  20. 20.
    Belinsky, S. A., Kauffman, F. C., Ji, S., Lemasters, J. J., and Thurman, R. G., 1983, Stimulation of mixed-function oxidation of 7-ethoxycoumarin in periportal and pericentral regions of the perfused rat liver by xylitol, Eur. J. Biochem. 137: 1–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Ghosh, A. K., Finegold, D., White, W., Zawalich, K., and Matschinsky, F. W., 1982, Quantitative histochemical resolution of the oxidation-reduction and phosphate potentials within the simple hepatic acinus, J. Biol. Chem. 257: 5476–5481.PubMedGoogle Scholar
  22. 22.
    Ji, S., Beckh, K., and Jungermann, K., 1984, Regulation of oxygen consumption and microcirculation by α-sympathetic nerves in isolated perfused rat liver, FEBS Lett. 167: 117–122.PubMedCrossRefGoogle Scholar
  23. 23.
    Kashiwagi, T., Ji, S., Lemasters, J. J., and Thurman, R. G., 1982, Rates of alcohol dehydro-genase-dependent ethanol metabolism in periportal and pericentral regions of the perfused rat liver, Mol. Pharmacol. 21: 438–443.PubMedGoogle Scholar
  24. 24.
    Kashiwagi, T., Lindros, K. O., and Thurman, R. G., 1983, Aldehyde dehydrogenase-dependent acetaldehyde metabolism in periportal and pericentral regions of the perfused rat liver, J. Pharmacol. Exp. Ther. 224: 538–542.PubMedGoogle Scholar
  25. 25.
    Belinsky, S. A., Matsumura, T., Kauffman, F. C., and Thurman, R. G., 1984, Rates of allyl alcohol metabolism in periportal and pericentral regions of the liver lobule, Mol. Pharmacol. 25: 158–164.PubMedGoogle Scholar
  26. 26.
    Matsumura, T., and Thurman, R. G., 1984, Predominance of glycolysis in pericentral regions of the liver lobule, Eur. J. Biochem. 140: 229–234.PubMedCrossRefGoogle Scholar
  27. 27.
    Ji, S., Lemasters, J. J., and Thurman, R. G., 1981, A fluorometric method to measure sublobular rates of mixed-function oxidation in the hemoglobin-free perfused rat liver, Mol. Pharmacol. 19: 513–516.PubMedGoogle Scholar
  28. 28.
    Conway, J. O., Kauffman, F. C., Ji, S., and Thurman, R. G., 1982, Rates of sulfation and glucuronidation of 7-hydroxycoumarin in periportal and pericentral regions of the liver lobule, Mol. Pharmacol. 22: 509–516.PubMedGoogle Scholar
  29. 29.
    Conway, J. G., Kauffman, F. C., Tsukada, T., and Thurman, R. G., 1984, Glucuronidation of 7-hydroxycoumarin in periportal and pericentral regions of the liver lobule, Mol. Pharmacol. 25: 487–493.PubMedGoogle Scholar
  30. 30.
    Conway, J. G., Popp, J. A., Ji, S., and Thurman, R. G., 1983, Effect of size on portal circulation of hepatic nodules from carcinogen-treated rats, Cancer Res. 43: 3374–3378.PubMedGoogle Scholar
  31. 31.
    Belinsky, S. A., Popp, J. A., Kauffman, F. C., and Thurman, R. G., 1984, Trypan blue uptake as a new method to investigate hepatotoxicity in periportal and pericentral regions of the liver lobule: Studies with allyl alcohol in the perfused liver, J. Pharmacol. Exp. Ther. 230: 755–760.PubMedGoogle Scholar
  32. 32.
    Lemasters, J. J., Stemkowski, C. J., Ji, S., and Thurman, R. G., 1982, Liver structure and function in hypoxia, in: Protection of Tissues against Hypoxia (A. Wauquier, M. Borgers, and W. K. Amery, eds.), pp. 15–30, Elsevier, Amsterdam.Google Scholar
  33. 33.
    Lemasters, J. J., Stemkowski, C. J., Ji, S., and Thurman, R. G., 1983, Cell surface changes and enzyme release during hypoxia and reoxygenation in the isolated, perfused rat liver, J. Cell Biol. 97: 778–786.PubMedCrossRefGoogle Scholar
  34. 34.
    Trump, B. F., and Arstila, A. U., 1975, Cell membranes and disease processes, in: Pathobiology of Cell Membranes, Vol. I (B. F. Trump and A. U. Arstila, eds.), pp. 1–103, Academic Press, New York.Google Scholar
  35. 35.
    Inch, W. R., 1958, Problems associated with the use of the exposed platinum electrode for measuring oxygen tension in vivo, Can. J. Biochem. Physiol. 36: 1009–1021.PubMedCrossRefGoogle Scholar
  36. 36.
    Baumgärtl, H., and Lübbers, D. W., 1983, Microaxial needle sensor for polarographic measurement of local O2 pressure in the cellular range of living tissue: Its construction and properties, in: Polarographic Oxygen Sensors (E. Gtnaiger and H. Forstner, eds.), pp. 37–65, Springer-Verlag, Berlin.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John J. Lemasters
    • 1
  • Sungchul Ji
    • 2
  • Ronald G. Thurman
    • 3
  1. 1.Laboratories for Cell Biology, Department of AnatomySchool of Medicine, University of North CarolinaChapel HillUSA
  2. 2.Department of Pharmacology and ToxicologyCollege of Pharmacy, Rutgers UniversityPiscatawayUSA
  3. 3.Department of PharmocologySchool of Medicine, University of North CarolinaChapel HillUSA

Personalised recommendations