Separation of Functionally Different Liver Cell Types

  • Kai O. Lindros
  • Gunnar Bengtsson
  • Mikko Salaspuro
  • Hannu Väänänen


It is becoming increasingly evident that the mammalian liver is more heterogeneous than was previously thought.1,2 Among the functionally different cell types identified, the hepatocytes (parenchymal cells) contribute more than 90% to the total volume occupied by liver cells.3,4 The nonhepatocytes or non-parenchymal cells are much smaller than the hepatocytes and constitute about 40% of the cells by number. They consist of sinusoidal cells, i.e., Kupffer cells, endothelial cells, fat-storing cells, and pit cells (for reviews, see van Berkel4 and Zahlten et al 5) and of cells from the vascular trees.6 Our present knowledge of hepatic cell heterogeneity is based mainly on microscopy combined with morphometry, histochemistry, autoradiography, and immunofluorescence. Although many functional characteristics of various cell types have been revealed with these techniques, they exclude studies on metabolic dynamics. Regulation of synthetic and catabolic pathways and functional coordination among the different cell types are best studied by means of isolated intact cells. Basic functions of the liver — e.g., the uptake and metabolism of xenobiotics, the maintenance of blood glucose homeostasis, the regulation of plasma protein synthesis, the production of lipoproteins, and the development of pathological states such as fibrosis — are all better understood through studies of separated cell types. It is therefore not unexpected that the existence of enzymatic techniques for dispersion of tissue into isolated intact cells has provoked the development of techniques for the subsequent isolation of various cell types.


Kupffer Cell Pyruvate Kinase Sinusoidal Cell Periportal Area Centrifugal Elutriation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gumucio, J. J., and Miller, D. L., 1981, Functional implications of liver cell heterogeneity, Gastroenterology 80: 393–403.PubMedGoogle Scholar
  2. 2.
    Jungermann, K., and Katz, N., 1982, Functional hepatocellular heterogeneity, Hepatology 2: 385–395.PubMedCrossRefGoogle Scholar
  3. 3.
    Blowin, A., Bolender, R. P., and Weibel, E. R., 1977, Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma: A stereological study, J. Cell Biol. 72: 441–445.CrossRefGoogle Scholar
  4. 4.
    Van Berkel, T. J. C., 1982, Functions of hepatic non-parenchymal cells, in: Metabolic Com-partmentation (H. Sies ed.), pp. 437–482, Academic Press, London.Google Scholar
  5. 5.
    Zahlten, R. N., Rogoff, T. M., and Steer, C. J., 1981, Isolated Kupffer cells, endothelial cells and hepatocytes as investigative tools for liver research, Fed. Proc. Fed. Am. Soc. Exp. Biol 40: 2460–2468.Google Scholar
  6. 6.
    Daoust, R., 1958, The cell population of liver tissue and the cytological reference bases, in: Liver Function: A Symposium on Approaches to the Quantitative Description of Liver Function (R. W. Brauer, ed.), Vol. 4, pp. 3–10, American Institute of Biological Science, Washington D. C.Google Scholar
  7. 7.
    Jungermann, K., and Sasse, D., 1978, Heterogeneity of liver parenchymal cells. Trends Biochem. Sci. 3: 198–202.CrossRefGoogle Scholar
  8. 8.
    Böyrum, A., Berg, T., and Blomhoff, R., 1983, Fractionation of mammalian cells, in: lodinated Density Gradient Media: A Practical Approach (D. Rickwood, ed.), pp. 147–171, IRL Press, Oxford.Google Scholar
  9. 9.
    Seglen, P. O., 1979, Disaggregation and separation of rat liver cells, in: Cell Populations, Vol. 9 (E. Reid ed.), pp. 25–46, Ellis Horwood, Chichester, England.Google Scholar
  10. 10.
    Kleinman, H. K., Klebe, R. J., and Martin, G. R., 1981, Role of collagenous matrices in the adhesion and growth of cells, J. Cell Biol. 88: 473–485.PubMedCrossRefGoogle Scholar
  11. 11.
    Waymouth, C., 1982, Methods for obtaining cells in suspension from animal tissues, in: Cell Separation (T. G. Pretlow and T. P. Pretlow, eds), pp. 1–31, Academic Press, New York.Google Scholar
  12. 12.
    Takeda, Y., Ichihara, A., Tanioka, H., and Inoue, H., 1964, The biochemistry of animal cells, J. Biol. Chem. 239: 3590–3596.PubMedGoogle Scholar
  13. 13.
    Ramadori, G., Lenzi, M., Dienes, H. P., and Meyer zum Büschenfelde, K. H., 1983, Binding properties of mechanically and enzymatically isolated hepatocytes for IgG and C3, Liver 3: 358–368.PubMedGoogle Scholar
  14. 14.
    Herbst, C., 1900, Über das Auseinandergehen von Furchungs und Gewebezellen in kalkfreiem Medium, Arch. Entwicklungsmech. Org. 9: 424–463.CrossRefGoogle Scholar
  15. 15.
    Andersson, N., 1953, The mass isolation of whole cells from rat liver, Science 117: 627–628.CrossRefGoogle Scholar
  16. 16.
    Berry, M. N., Farrington, C., Grivel, A. R., and Wallace, P. G., 1983, Preparation of isolated hepatocytes in good yield without enzyme digestion, in: Isolation, Characterisation, and Use of Hepatocytes (R. A. Harris and N. W. Cornell, eds.), pp. 7–10, Elsevier, Amsterdam.Google Scholar
  17. 17.
    Howard, R. B., Christensen, A., Gibbs, F. A., and Pesch, L. A., 1967, The enzymatic preparation of isolated intact parenchymal cells from rat liver, J. Cell Biol. 35: 675–684.PubMedCrossRefGoogle Scholar
  18. 18.
    Howard, R. B., and Pesch, L. A., 1968, Respiratory activity of intact isolated parenchymal cells from rat liver, J. Biol. Chem. 243: 3105–3109.PubMedGoogle Scholar
  19. 19.
    Berry, M. N., and Friend, D. S., 1969, High-yield preparation of isolated rat liver parenchymal cells, J. Cell Biol. 43: 506–520.PubMedCrossRefGoogle Scholar
  20. 20.
    Seglen, P. O., 1976, Preparation of isolated rat liver cells, Methods Cell Biol. 13: 29–83.PubMedCrossRefGoogle Scholar
  21. 21.
    Nilsson, M., and Berg, T., 1977, Uptake and degration of formaldehyde-treated 125Mabelled human serum albumin in rat liver cells in vivo and in vitro, Biochim. Biophys. Acta. 497: 171–182.PubMedCrossRefGoogle Scholar
  22. 22.
    Munthe-Kaas, A. C., and Seglen, P. O., 1974, The use of metrizamide as a gradient medium for isopycnic separation of rat liver cells, FEBS Lett. 43: 252–256.PubMedCrossRefGoogle Scholar
  23. 23.
    Seglen, P. O., 1976, The use of metrizamide for preparation of rat-liver cells, in: Biological Separations in lodinated Density Gradient Media (D. Rickwood, ed.), pp. 107–221, Information Retrieval, London.Google Scholar
  24. 24.
    Pertoft, H., Rubin, K., Kjellen, L., Laurent, T. C., and Klingeborn, B., 1977, The viability of cells grown or centrifuged in a new density gradient medium, Percoll, Exp. Cell Res. 110: 449–458.PubMedCrossRefGoogle Scholar
  25. 25.
    Singh, B., Borrebaek, B., and Osmundsen, H., 1983, Separation of different cell populations of rat liver by density gradient centrifugation in a vertical rotor with self-generated Percoll gradients, Acta Physiol. Scand. 117: 497–505.PubMedCrossRefGoogle Scholar
  26. 26.
    Mills, D. M., and Zucker-Franklin, D., 1969, Electron microscopic study of isolated Kupffer cells, Am. J. Pathol. 54: 147–166.PubMedGoogle Scholar
  27. 27.
    Roser, B., 1968, The distribution of intravenously injected Kupffer cells in the mouse, J. Reticuloendothel. Soc. 5: 455–471.PubMedGoogle Scholar
  28. 28.
    Knook, D. L., Sleyster, E. C., and van Noord, M. J., 1975, Changes in lysosomes during ageing of parenchymal and non parenchymal liver cells, Adv. Exp. Med. Biol. 53: 155–169.PubMedCrossRefGoogle Scholar
  29. 29.
    Berg, T., and Boman, D., 1973, Distribution of lysosomal enzymes between parenchymal and Kupffer cells of rat liver, Biochim. Biophys. Acta 321: 585–596.PubMedGoogle Scholar
  30. 30.
    Blomhoff, R., Smedsrod, B., Eskild, W., Granum, P. E., and Berg, T., 1984, Preparation of isolated liver endothelial cells and Kupffer cells in high yield by means of an enterotoxin, Exp. Cell Res. 150: 194–204.PubMedCrossRefGoogle Scholar
  31. 31.
    Wisse, E., and Knook, D. L. (eds.), 1977, Kupffer cells and other liver sinusoidal cells, in: Proceedings of the International Kupffer Cell Symposium, Noordwijkerhout, The Netherlands, Elsevier/North-Holland, Amsterdam, New York, and Oxford.Google Scholar
  32. 32.
    Knook, D. L., and Wisse, E. (eds.), 1982, Sinusoidal Liver Cells, Elsevier/North-Holland, Amsterdam, New York, and Oxford.Google Scholar
  33. 33.
    Jones, E. A., 1983, Hepatic sinusoidal cells: New insights and controversies, Hepatology 3: 259–266.PubMedCrossRefGoogle Scholar
  34. 34.
    Van Berkel, T. J. C., Kruijt, J. K., and Koster, J. F., 1975, Identity and activities of lysosomal enzymes in parenchymal and non-parenchymal cells from rat liver, Eur. J. Biochem. 58: 142–152.CrossRefGoogle Scholar
  35. 35.
    Grant, A. G, and Billing, B. H., 1977, The isolation and characterization of a bile ductule cell population from normal and bile-duct ligated rat livers, Br. J. Exp. Pathol. 58: 301–310.PubMedGoogle Scholar
  36. 36.
    Munthe-Kaas, A. C., Berg, T., Seglen, P.O., and Seljelid, R., 1975, Mass isolation and culture of rat Kupffer cells, J. Exp. Med. 141: 1–10.PubMedCrossRefGoogle Scholar
  37. 37.
    Knook, D. L., and Sleyster, E. C., 1976, Separation of Kupffer and endothelial cells of the rat liver by centrifugal elutriation, Exp. Cell Res. 99: 444–449.PubMedCrossRefGoogle Scholar
  38. 38.
    Knook, D. L., Blansjaar, N., and Sleyster, E. C., 1977, Isolation and characterization of Kupffer and endothelial cells from the rat liver, Exp. Cell Res. 109: 317–329.PubMedCrossRefGoogle Scholar
  39. 39.
    Praaning-van Dalen, D. P., and Knook, D. L., 1982, Quantitative determination of in vivo endocytosis by rat liver Kupffer and endothelial cells facilitated by an improved cell isolation method, FEBS Lett. 141: 229–232.PubMedCrossRefGoogle Scholar
  40. 40.
    Nagelkerke, J. F., Barto, K. P., and van Berkel, T. J. C., 1983, In vivo and in vitro uptake and degradation of acetylated low density lipoprotein by rat liver endothelial, Kupffer, and parenchymal cells, J. Biol. Chem. 258: 12, 221–12, 227.Google Scholar
  41. 41.
    De Leeuw, A. M., Barelds, R. J., de Zanger, R., and Knook, D. L., 1982, Primary cultures of endothelial cells of the rat liver, Cell Tissue Res. 223: 201–215.PubMedCrossRefGoogle Scholar
  42. 42.
    Sleyster, E. C., and Knook, D. L., 1983, Relation between localization and function of rat liver Kupffer cells, Lab Invest. 47: 484–494.Google Scholar
  43. 43.
    Sleyster, E. C., Westerhuis, F. G., and Knook, D. L., 1977, The purification of nonparenchymal liver cell classes by centrifugal elutriation, in: Kupffer Cells and Other Sinusoidal Cells (E. Wisse and D. L. Knook, eds.), pp. 289–298, Elsevier, Amsterdam.Google Scholar
  44. 44.
    Knook, D. L., and de Leeuw, A. M., 1982, Isolation and characterisation of fat-storing cells from the rat liver, in: Sinusoidal Liver Cells (D. L. Knook and E. Wisse, eds.), pp. 45–52, Elsevier, Amsterdam.Google Scholar
  45. 45.
    Yaswen, P., Hayner, N.T., and Fansto, N., 1984, Isolation of oval cells by centrifugal elutriation and comparison with other cell types purified from normal and preneoplastic livers, Cancer Res. 44: 324–331.PubMedGoogle Scholar
  46. 46.
    Sumner, J. G., Freedman, R. B., and Lodola, A., 1983, Characterisation of hepatocyte sub-populations generated by centrifugal elutriation, Eur. J. Biochem. 134: 539–545.PubMedCrossRefGoogle Scholar
  47. 47.
    Gumucio, J. J., Miller, D. L., Krauss, M. D., and Zanolli, C. C., 1981, Transport of fluorescent compounds into hepatocytes and the resultant zonal labeling of the hepatic acinus in the rat, Gastroenterology 80: 639–646.PubMedGoogle Scholar
  48. 48.
    Gumucio, J. J., De Mason, L. J., Miller, D. L., Krezoski, S. O., and Keener, M., 1978, Induction of cytochrome P-450 in a selective subpopulation of hepatocytes, Am. J. Physiol. 234: C102–C109.PubMedGoogle Scholar
  49. 49.
    Wanson, J.-C., Drochmans, P., May, C., Penasse, W., and Popowski, A., 1975, Isolation of centrolobular and perilobular hepatocytes after phenobarbital treatment, J. Cell Biol. 66: 23–41.PubMedCrossRefGoogle Scholar
  50. 50.
    Tonda, K., Hasegawa, T., and Hirata, M., 1983, Effects of phenobarbital and 3-methylchol-anthrene pretreatments on monooxygenase activities and proportions of isolated rat hepatocyte subpopulations, Mol. Pharmacol. 23: 235–243.PubMedGoogle Scholar
  51. 51.
    Tonda, K., and Hirata, M., 1983, Glucuronidation and sulfation of p-nitrophenol in isolated rat hepatocyte subpopulations: Effect of phenobarbital and 3-methylcholanthrene pretreatment, Chem. Biol. Interact. 47: 277–287.PubMedCrossRefGoogle Scholar
  52. 52.
    Miller, S. B., Saccomani, G., Pretlow, T. P., Kimball, P. M., Scott, J. A., Sachs, G., and Pretlow, T. G., 1983, Purification of cells from livers of carcinogen-treated rats by free-flow electrophoresis, Cancer Res. 43: 4176–4179.PubMedGoogle Scholar
  53. 53.
    Walter, H., Krob, E. J., Ascher, G. S., and Seaman, G. V. F., 1973, Partition of rat liver cells in aqueous dextran-polyethylene glycol phase systems, Exp. Cell Res. 28: 15–26.CrossRefGoogle Scholar
  54. 54.
    Rojkind, M., Portales, M. L., and Cid, M. E., 1974, Isolation of rat liver cells containing concanavalin A receptor sites, FEBS Lett. 47: 11–14.PubMedCrossRefGoogle Scholar
  55. 55.
    Bernaert, D., Wanson, J.-C., Mosselmans, R., de Paermentier, F, and Drochmans, P., 1979, Separation of adult rat hepatocytes into distinct subpopulations by centrifugal elutriation: Morphological, morphometrical and biochemical characterisation of cell fractions, Biol. Cell. 34: 159–174.Google Scholar
  56. 56.
    Loud, A., 1968, A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells J. Cell Biol. 37: 27–46.PubMedCrossRefGoogle Scholar
  57. 57.
    Schmucker, D. L., Mooney, J. S., and Jones, A. L., 1978, Stereological analysis of hepatic fine structure in the Fisher 344 rat: Influence of sublobular location and animal age, J. Cell. Biol. 78: 319–337.PubMedCrossRefGoogle Scholar
  58. 58.
    Reith, A., and Schüler, B., 1971, The ultrastructure of mitochondria in relation to the lobular distribution of hepatocytes of the normal rat, J. Ultrastruct. Res. 36: 550–551.Google Scholar
  59. 59.
    Jones, A. L., Schmucker, D. L., Mooney, J. S., Adler, R. D, and Ockner, R. K., 1978, A quantitative analysis of hepatic ultrastructure in rats during enhanced bile secretion, Anat. Rec. 192: 277–288.PubMedCrossRefGoogle Scholar
  60. 60.
    Leif, R. C., 1970, Buoyant density separation of cells, in: Automated Cell Identification and Cell Sorting (G. L. Wied and G. F. Bahr, eds.), pp. 21–95, Academic Press, New York and London.Google Scholar
  61. 61.
    Drochmans, P., Wanson, J.-C., and Mosselmans, R., 1975, Isolation and subfractionation on Ficoll gradients of adult rat hepatocytes, J. Cell Biol. 66: 1–22.PubMedCrossRefGoogle Scholar
  62. 62.
    Castagna, M., and Chauveau, J., 1969, Séparation des hepatocytes isolés de rat en fractions cellulaires métaboliquement distinctes, Exp. Cell Res. 57: 211–222.PubMedCrossRefGoogle Scholar
  63. 63.
    Bengtsson, G., Kiessling, K.-H., and Axelsson, K., 1978, Density subpopulations of isolated rat hepatocytes differ in alanine aminotransferase activity, IRCS Med Sci. 6: 119.Google Scholar
  64. 64.
    Wakefield, J. St J., Gale, J. S., Berridge, M. V., Jordan, T. W., and Ford, H. C., 1982, Is Percoll innocuous to cells?, Biochem. J. 202: 795–797.PubMedGoogle Scholar
  65. 65.
    Bengtsson, G., Smith-Kielland, A., and Morland, J., 1984, Ethanol effects on protein synthesis in nonparenchymal liver cells, hepatocytes, and density populations of hepatocytes, Exp. Mol. Pathol. 41: 44–57.PubMedCrossRefGoogle Scholar
  66. 66.
    Kondrup, J., Bro, B., Dich, J., Grunnet, N., and Thieden, H. I. D., 1980, Fractionation and characterisation of rat hepatocytes isolated from ethanol-induced fatty liver, Lab. Invest. 43: 182–190.PubMedGoogle Scholar
  67. 67.
    Bengtsson, G, Kiessling, K.-H., Smith-Kielland, A., and Morland, J., 1981, Partial separation and biochemical characteristics of periportal and perivenous hepatocytes from rat liver, Eur. J. Biochem. 118: 591–597.PubMedCrossRefGoogle Scholar
  68. 68.
    Katz, N., Teutsch, H. F., Jungermann, K., and Sasse, D, 1977, Heterogeneous reciprocal localization of fructose-1, 6-bishosphatase and of glucokinase in microdissected periportal and perivenous rat liver tissue, FEBS Lett. 83: 272–276.PubMedCrossRefGoogle Scholar
  69. 69.
    Katz, N., Teutsch, H. F., Sasse, D., and Jungermann, K., 1977, Heterogeneous distribution of glucose-6-phosphatase in microdissected periportal and perivenous rat liver tissue, FEBS Lett. 76: 226–230.PubMedCrossRefGoogle Scholar
  70. 70.
    Teutsch, H. F., and Rieder, H., 1979, NADP-dependent dehydrogenases in rat liver parenchyma. II. Comparison of qualitative and quantitative G6PDH distribution patterns with particular reference to sex differences, Histochemistry 60: 43–52.PubMedCrossRefGoogle Scholar
  71. 71.
    Zierz, S., Katz, N. and Jungermann, K., 1983, Distribution of pyruvate kinase type L and M2 in microdissected periportal and perivenous rat liver tissue with different dietary states, Hoppe-Seyler’s Z. Physiol. Chem. 364: 1447–1453.PubMedCrossRefGoogle Scholar
  72. 72.
    Shank, R. E., Morrison, G., Cheng, C.H., Karl, I., and Schwartz, R., 1959, Cell heterogeneity within the hepatic lobule (quantitative histochemistry), J. Histochem. Cytochem. 7: 237–239.PubMedCrossRefGoogle Scholar
  73. 73.
    Morrison, G. R., Brock, F. E., Karl, I. E., and Shank, R. E., 1965, Quantitative analysis of regenerating and degenerating areas within the lobule of the carbon tetrachloride-injured liver, Arch Biochem. Biophys. 111: 448–460.PubMedCrossRefGoogle Scholar
  74. 74.
    Welsh, F. A, 1972, Changes in distribution of enzymes within the liver lobule during adaptive increases, J. Histochem. Cytochem. 20: 107–111.PubMedCrossRefGoogle Scholar
  75. 75.
    Guder, W. G., and Schmidt, U., 1976, Liver cell heterogeneity: The distribution of pyruvate kinase and phosphoenolpyruvate carboxykinase (GTP) in the liver lobule of fed and starved rats, Hoppe-Seyler’s Z. Physiol. Chem. 357: 1793–1800.PubMedCrossRefGoogle Scholar
  76. 76.
    Smith-Kielland, A., Bengtsson, G., Svendsen, L., and Morland, J., 1982, Protein synthesis in different populations of rat hepatocytes separated according to density, J. Cell Physiol. 110: 262–266.PubMedCrossRefGoogle Scholar
  77. 77.
    Bengtsson, G., and Gadeholt, G, 1981, The intra-acinar distribution of Superoxide dismutase, NADPH-cytochrome c reductase and cytochrome c oxidase (using rat hepatocytes), Acta Pharmacol. Toxicol. 49(Suppl. 4), Abstract 37.Google Scholar
  78. 78.
    Weigand K., Otto, I., and Schopf, R., 1974, Ficoll density separation of enzymatically isolated rat liver cells, Acta Hepato-Gastroenterol. 21: 245–253.Google Scholar
  79. 79.
    Burger, P. C., and Herdson, P. B., 1966, Phenobarbital-induced fine structural changes in rat liver, Am. J. Pathol. 48: 793–809.PubMedGoogle Scholar
  80. 80.
    Weigand, K., Richter, E., and Esperer, H.-D., 1977, Biochemical studies of isolated rat hepatocytes from normal and phenobarbital-treated liver as obtained by rate zonal centrifugation, Acta Hepato-Gastroenterol. 24: 170–174.Google Scholar
  81. 81.
    Russo, E., Drochmans, P., Penasse, W., and Wanson, J. C., 1975, Heterogeneous distribution of glvcogen within the (rat) liver lobule, induced experimentally, J. Submicrosc. Cytol. 7: 31–45.Google Scholar
  82. 82.
    Pretlow, T. G, and Pretlow, T. P., 1982, Sedimentation of cells: An overview and discussion of artifacts, in: Cell Separation (T. G. Pretlow, and T. P. Pretlow, eds.), pp. 41–61, Academic Press, New York.Google Scholar
  83. 83.
    Wells, J. R., 1982, A new approach to the separation of cells at unit gravity, in: Cell Separation (T. G. Pretlow and T. P. Pretlow, eds.), pp. 169–191, Academic Press, New York.Google Scholar
  84. 84.
    Tulp, A., Welagen, J. J. M. N., and Emmelot, P., 1976, Separation of intact rat hepatocytes and rat liver nuclei into ploidy classes by velocity sedimentation at unit gravity, Biochim. Biophys. Acta 451: 567–582.PubMedCrossRefGoogle Scholar
  85. 85.
    Deschenes, J., Valet, J.-P., and Marceau, N., 1981, The relationship between cell volume, ploidy, and functional activity in differentiating hepatocytes, Cell Biophys. 3: 321–334.PubMedGoogle Scholar
  86. 86.
    Epstein, C. J., 1967, Cell size, nuclear content, and the development of polyploidy in the mammalian liver, Proc. Natl. Acad. Sci. U.S.A. 57: 327–334.PubMedCrossRefGoogle Scholar
  87. 87.
    Le Rumeur, E., Guguen-Guillouzo, C., Beaumont, C., Saunier, A., and Guillouzo, A., 1983, Albumin secretion and protein synthesis by cultured diploid and tetraploid rat hepatocytes separated by elutriation, Exp. Cell Res. 147: 247–256.PubMedCrossRefGoogle Scholar
  88. 88.
    Wanson, J.-C., Bernaert, D., Penasses, W., Mosselmans, R., and Bannasch, P., 1980, Separation in distinct subpopulations by elutriation of liver cells following exposure of rats to n-nitrosomorpholine, Cancer Res. 40: 459–471.PubMedGoogle Scholar
  89. 89.
    Fisher, D., 1981, The separation of cells and organelles by partitioning in two-polymer aqueous phases, Biochem. J. 196: 1–10.PubMedGoogle Scholar
  90. 90.
    Walter, H., 1982, Separation and subfractionation of blood cell populations based on their surface properties by partitioning in two polymer aqueous phase systems, in: Cell Separation (T. G. Pretlow and T. P. Pretlow, eds.), pp. 261–301, Academic Press, New York.Google Scholar
  91. 91.
    Sasse, D., 1975, Dynamics of liver glycogen: The topochemistry of glycogen synthesis, glycogen content and glycogenolysis under the experimental conditions of glycogen accumulation and depletion, Histochemistry 45: 237–254.PubMedCrossRefGoogle Scholar
  92. 92.
    Richards, W. L., and van Potter, R., 1980, Scanning microdensitometry of glycogen zonation in the livers of rats adapted to a controlled feeding schedule and to 30, 60, or 90% casein diets, Am. J. Anat. 157: 71–85.PubMedCrossRefGoogle Scholar
  93. 93.
    Väänänen, H., Lindros, K. O., and Salaspuro, M., 1983, Selective isolation of intact periportal or perivenous hepatocytes by antero-or retrograde collagenase gradient perfusion, Liver 3: 131–139.PubMedGoogle Scholar
  94. 94.
    Bengtsson, G., and Lindros, K., 1984, Dye infusion to evaluate the efficiency of the collagenase gradient perfusion for isolation of periportal and perivenous hepatocytes, Acta Pharmacol. Toxicol. 55: (Suppl. I): 4.Google Scholar
  95. 95.
    Sasse, D. Katz, N. and Jungermann, K., 1975, Functional heterogeneity of rat liver parenchyma and of isolated hepatocytes, FEBS Lett. 57: 83–88.PubMedCrossRefGoogle Scholar
  96. 96.
    Väänänen, H., Salaspuro, M., and Lindros, K., 1984, The effect of chronic ethanol ingestion on ethanol metabolizing enzymes in isolated periportal and perivenous rat hepatocytes, Hepa-tology 4: 862–866.Google Scholar
  97. 97.
    Väänänen, H. and Lindros, K., 1985, Comparison of ethanol metabolism in isolated periportal or perivenous hepatocytes: Effects of chronic ethanol treatment, Alcoholism, Clin. Exptl. Res. 9: 315–322.CrossRefGoogle Scholar
  98. 98.
    Häussinger, D., and Gerok, W., 1983, Hepatocytes heterogeneity in glutamate uptake by isolated rat liver, Eur. J. Biochem. 136: 421–425.PubMedCrossRefGoogle Scholar
  99. 99.
    Quistorff, B., Grunnet, N. and Cornell, N., 1985, Digitonin perfusion of rat liver. A new approach in the study of intra-acinar and intracellular compartmentation in the liver, Biochem. J. 226: 289–297.PubMedGoogle Scholar
  100. 100.
    Lindros, K., and Penttilä, K., 1985, Digitonin-collagenase perfusion for efficient separation of periportal or perivenous hepatocytes, Biochem. J. 228: 757–760.PubMedGoogle Scholar
  101. 101.
    Quistorff, B., 1985, Gluconeogenesis in periportal and perivenous hepatocytes, isolated by a new high-yield digitonin/collagenase perfusion technique, Biochem. J. 229: 221–226.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Kai O. Lindros
    • 1
  • Gunnar Bengtsson
    • 1
  • Mikko Salaspuro
    • 1
  • Hannu Väänänen
    • 1
  1. 1.Research Laboratories of the Finnish State Alcohol Company, Alko, Ltd.Helsinki 10Finland

Personalised recommendations