Quantitative Histochemical Measurements within Sublobular Zones of the Liver Lobule

  • Frederick C. Kauffman
  • Franz M. Matschinsky


It is well established that parenchymal cells in different zones of the hepatic lobule differ in function, biochemical properties, and susceptibility to hepato-toxins.1–3 The experimental approaches that have been used most extensively over the years to describe the biochemical heterogeneity of the liver lobule are classic microscopic histochemistry and quantitative histochemistry. The object of this chapter is to describe the latter approach and illustrate its application to analyses of selected substrates and enzyme activites in microdissected samples from specific zones of the liver lobule. Methods of high specificity and sensitivity are required for such analyses because the number of cells that can be obtained conveniently from specific zones of the liver lobule range in number from about 100 to 500 depending on the age and species of animal studied. The average mass of a rat liver cell is estimated to be on the order of 1 × 10-9 g. Thus, an intermediate such as ATP, which is estimated to be about 5 mmoles/kg wet weight liver, would be about 5 × 10-15 mole/cell or about 0.5–2.5 × 10-12 mole/microdissected sample. Although this amount of substrate is below the range detected by conventional biochemical analytical techniques, this level of substrate can be measured conveniently via pyridine-nucleotide-dependent enzymatic cycling assays4,5 and some bioluminescence assays.6,7 Each of these types of analyses can be applied to specimens obtained by quantitative histo-chemical sampling procedures.


Liver Lobule Pyridine Nucleotide Bioluminescent Assay Bovine Retina Bacterial Luciferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gumucio, J. J., and Miller, D. L., 1981, Functional implications of liver cell heterogeneity, Gastroenterology 80: 393–403.PubMedGoogle Scholar
  2. 2.
    Jungermann, K. K., and Katz, N., 1985, Metabolism of carbohydrate, in: Regulation of Hepatic Metabolism: Intra-and Intercellular Compartmentation (R. G. Thurman, F. C. Kauffman, and K. Jungermann, eds.), Chapter 9, Plenum Press, New York.Google Scholar
  3. 3.
    Jungermann, K., and Sasse, D., 1978, Heterogeneity of liver parenchymal cell, Trends Biochem Sci. 3: 198–202.CrossRefGoogle Scholar
  4. 4.
    Lowry, O. H., Passonneau, J. V., Schulz, D. W., and Rock, M. K., 1961, The measurement of pyridine nucleotides by enzymatic cycling, J. Biol. Chem. 236: 2746–2755.PubMedGoogle Scholar
  5. 5.
    Lowry, O. H., and Passonneau, J. V., 1972, A Flexible System of Enzymatic Analysis, Academic Press, New York.Google Scholar
  6. 6.
    Lundin, A., Rickardsson, A., and Thore, A., 1976, Continuous monitoring of ATP-converting reactions by purified firefly luciferase, Anal. Biochem. 75: 611–620.PubMedCrossRefGoogle Scholar
  7. 7.
    Lust, W. D., Feussner, G. K., Barbehenn, E. K., and Passonneau, J. V., 1981, The enzymatic measurement of adenine nucleotides and P-creatine in picomole amounts, Anal. Biochem. 110: 258–266.PubMedCrossRefGoogle Scholar
  8. 8.
    Holter, H., and Linderstrom-Lang, K., 1935, The distribution of pepsin in the gastric mucosa of pigs, C. R. Lab. Carlsberg Ser. Chim. 20: 1–32.Google Scholar
  9. 9.
    Anfinsen, C. B., Lowry, O. H., and Hastings, A. B., 1942, The application of the freeze-drying technique to retinal histochemistry, J. Cell. Comp. Physiol. 20: 231–237.CrossRefGoogle Scholar
  10. 10.
    Lowry, O. H., 1944, A simple quartz torsion balance, J. Biol. Chem. 152: 293–294.Google Scholar
  11. 11.
    Anfinsen, C. B., 1944, The distribution of cholinesterase in the bovine retina, J. Biol. Chem. 152: 267–278.Google Scholar
  12. 12.
    Anfinsen, C. B., 1944, The distribution of diphosphopyridine nucleotide in the bovine retina, J. Biol. Chem. 152: 274–284.Google Scholar
  13. 13.
    Lowry, O. H., 1975, Quantitative histochemistry, in: The Nervous System, Vol. 1, (D. B. Tower, ed.), pp. 523–533, Raven Press, New York.Google Scholar
  14. 14.
    Lowry, O. H., 1973, An unlimited microanalytical system, Acc. Chem. Res. 6: 289–293.CrossRefGoogle Scholar
  15. 15.
    Morrison, G. R., Brock, F. E., Karl, I. E., and Shank, R. E., 1965, Quantitative analysis of regenerating and degenerating areas within the lobule of carbon tetrachloride-injured liver, Arch. Biochem. Biophys. 111: 448–460.PubMedCrossRefGoogle Scholar
  16. 16.
    Ghosh, A. K., Finegold, D., White, W., Zawalich, K., and Matschinsky, F. M., 1982, Quantitative histochemical resolution of oxidation-reduction and phosphate potentials within the simple hepatic acinus, J. Biol. Chem. 257: 5476–5481.PubMedGoogle Scholar
  17. 17.
    Wollenberger, A., Ristau, O., and Schoffa, G., 1960, A simple technique for extremely rapid freezing of large pieces of tissue, Pflügers Arch. 270: 399–412.CrossRefGoogle Scholar
  18. 18.
    Belinsky, S. A., Kauffman, F. C., Ji, S., Lemasters, J. J., and Thurman, R. G., 1983, Stimulation of mixed-function oxidation of 7-ethoxycoumarin in periportal and pericentral regions of the perfused rat liver by xylitol, Eur. J. Biochem. 137: 1–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Charest, R., Blackmore, P. F., Berthon, B., and Exton, J. H., 1983, Changes in free cytosolic Ca2+ in hepatocytes following α1-adrenergic stimulation: Studies on Quin-2 loaded hepatocytes, J. Biol. Chem. 258: 8769–8773.PubMedGoogle Scholar
  20. 20.
    Ferrendelli, J. A., Gay, M. H., Sedgwick, W. G., and Chang, M. M., 1972, Quick freezing of the mouse central nervous system: Comparison of regional cooling rates and metabolite levels when using liquid nitrogen or Freon-12, J. Neurochem. 19: 979–987.PubMedCrossRefGoogle Scholar
  21. 21.
    Welsh, F. A., 1972, Changes in distribution of enzymes within the liver lobule during adaptive increases, J. Histochem. Cytochem. 20: 107–111.PubMedCrossRefGoogle Scholar
  22. 22.
    Loud, A. V., 1968, Quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells, J. Cell Biol. 37: 27–46.PubMedCrossRefGoogle Scholar
  23. 23.
    Lowry, O. H., 1953, The quantitative histochemistry of the brain: Histological sampling, J. Histochem. Cytochem. 1: 420–428.PubMedCrossRefGoogle Scholar
  24. 24.
    Negelein, E., and Haas, E., 1935, Über die Wirkungsweise des Zwischenferment, Biochem. Z. 282: 206–220.Google Scholar
  25. 25.
    Greengard, D., 1956, Determination of intermediary metabolites by enzymatic fluorimetry, Nature (London) 178: 632–634.CrossRefGoogle Scholar
  26. 26.
    Lowry, O. H., Roberts, N. R., and Chang, M. L. W., 1956, The analysis of single cells, J. Biol. Chem. 222: 97–107.PubMedGoogle Scholar
  27. 27.
    Lowry, O. H., Passonneau, J. V., and Rock, M. K., 1961, The stability of pyridine nucleotides, J. Biol. Chem. 236: 2756–2757.PubMedGoogle Scholar
  28. 28.
    Kaplan, N. O., Colowick, S. P., and Barnes, C. C., 1951, Effect of alkali on diphosphopyridine nucleotide, J. Biol. Chem. 191: 461–472.PubMedGoogle Scholar
  29. 29.
    Chi, M. M. Y., Lowry, C. V., and Lowry, O. H., 1978, An improved enzymatic cycle for nicotinamide-adenine dinucleotide phosphate, Anal. Biochem. 89: 119–129.PubMedCrossRefGoogle Scholar
  30. 30.
    Kato, T., Berger, S. J., Carter, J. A., and Lowry, O. H., 1973, An enzymatic cycling method for nicotinamide-adenine dinucleotide with malic and alcohol dehydrogenases, Anal. Biochem. 53: 86–97.PubMedCrossRefGoogle Scholar
  31. 31.
    Warburg, O., Christian, W., and Griese, A., 1935, Wasserstoffübertragendes C0-ferment; Seine Zusammensetzung und Wirkungsweise, Biochem. Z. 282: 157–205.Google Scholar
  32. 32.
    Breckenridge, B. M., 1964, The measurement of cyclic adenylate in tissues, Proc. Natl. Acad. Sci. U.S.A. 52: 1580–1586.PubMedCrossRefGoogle Scholar
  33. 33.
    Goldberg, N. D., Larner, J., Sasko, H., and O’Toole, A. G., 1969, Enzymatic analysis of cyclic 3′, 5′-AMP in mammalian tissues and urine, Anal. Biochem. 28: 523–544.PubMedCrossRefGoogle Scholar
  34. 34.
    DeLuca, M. A., 1978, Bioluminescence and Chemiluminescence, Academic Press, New York, San Francisco, and London.Google Scholar
  35. 35.
    Strehler, B. L., and Totter, J. R., 1952, Firefly luminescence in the study of energy transfer mechanisms. I. Substrate and enzyme determination, Arch Biochem. Biophys. 40: 28–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Kimmich, G. A., Randies, J., and Brand, J. S., 1975, Assay of picomole amounts of ATP, ADP and AMP using the luciferase enzyme system, Anal. Biochem. 69: 187–206.PubMedCrossRefGoogle Scholar
  37. 37.
    McElroy, W. D., 1947, The energy source for bioluminescence in an isolated system, Proc. Natl. Acad. Sci. U.S.A. 33: 342–345.PubMedCrossRefGoogle Scholar
  38. 38.
    Sinicropi, D. V., Dombrowski, A., Montgomery, C. W., Evans, R. K., and Kauffman, F. C., 1980, Maintenance of the adult rat superior cervical ganglion in vitro: Comparison of organ and expiant culture systems, J. Neurochem. 34: 1280–1287.PubMedCrossRefGoogle Scholar
  39. 39.
    Lienhard, G. E., and Secemski, I. I., 1973, P1, P5-Di(adenosine-5′)pentaphosphate, a potent multisubstrate inhibitor of adenylate kinase, J. Biol. Chem. 248: 1121–1123.PubMedGoogle Scholar
  40. 40.
    Matthews, J. C., and Cormier, M. J., 1978, Rapid microassay for the calcium-dependent protein modulator of cyclic nucleotide phosphodiesterase, Methods Enzymol. 57: 107–112.CrossRefGoogle Scholar
  41. 41.
    Hastings, J. W., 1978, A sensitive kinetic assay for glycerol using bacterial bioluminescence, Anal. Biochem. 139: 510–515.Google Scholar
  42. 42.
    Wienhausen, G., and De Luca, M. A., 1982, Bioluminescent assays of picomole levels of various metabolites using immobilized enzymes, Anal. Biochem. 127: 380–388.PubMedCrossRefGoogle Scholar
  43. 43.
    Palmisano, J., and Schwartz, J. H., 1982, Microasays for glucose-6-phosphate and 6-phos-phogluconate based on bioluminescent techniques, Anal. Biochem. 126: 409–413.PubMedCrossRefGoogle Scholar
  44. 44.
    Kather, H., and Wieland, E., 1984, Bioluminescent determination of free fatty acids, Anal. Biochem. 140: 349–353.PubMedCrossRefGoogle Scholar
  45. 45.
    Lavi, J. T., 1984, A sensitive kinetic assay for glycerol using bacterial bioluminescence, Anal. Biochem. 139: 510–515.PubMedCrossRefGoogle Scholar
  46. 46.
    Austin, L., Lowry, O. H., Brown, J. G., and Carter, J. C., 1972, The turnover of protein in discrete areas of rat brain, Biochem. J. 126: 351–359.PubMedGoogle Scholar
  47. 47.
    Bedoya, F., Meglasson, M., Wilson, J., and Matschinsky, F., 1985, Radiometric oil well assay for glucokinase in microscopic structures, Anal. Biochem. 144: 504–513.PubMedCrossRefGoogle Scholar
  48. 48.
    Trus, M., and Matschinsky, F. M., 1980, Hexokinase and glucokinase distribution in the liver lobule, J. Histochem. Cytochem. 28: 579–591.PubMedCrossRefGoogle Scholar
  49. 49.
    Matschinsky, F. M., Passonneau, J. V., and Lowry, O. H., 1968, Quantitative histochemical analysis of glycolytic intermediates and cofactors with an oil well technique, J. Histochem. Cytochem. 16: 29–39.PubMedCrossRefGoogle Scholar
  50. 50.
    Steiner, A. L., 1974, Assay of cyclic nucleotides by radioimmunoassay methods, Methods Enzymol. 38: 96–105.PubMedCrossRefGoogle Scholar
  51. 51.
    Rubin, E. H., and Ferrendelli, J. A., 1977, Distribution and regulation of cyclic nucleotide levels in cerebellum, in vivo, J. Neurochem. 29: 43–51.PubMedCrossRefGoogle Scholar
  52. 52.
    Godfrey, D. A., Hallcher, L. M., Laird, M. M., Matschinsky, F. M., and Sherman, W. H., 1982, Distribution of myoinositol in the cat cochlear nucleus, J. Neurochem. 38: 939–947.PubMedCrossRefGoogle Scholar
  53. 53.
    MacGregor, L. C., and Matschinsky, F. M., 1984, An enzymatic fluorimetric assay for myoinositol, Anal. Biochem. 141: 382–389.PubMedCrossRefGoogle Scholar
  54. 54.
    MacGregor, L., and Matschinsky, F. M., 1985, In preparation.Google Scholar
  55. 55.
    Sussman, I., MacGregor, L., and Matschinsky, F. M., 1985, In preparation.Google Scholar
  56. 56.
    Somlyo, A. P., Somlyo, A. V., and Shuman, H., 1979, Electron probe analysis of vascular smooth muscle: Composition of mitochondria, nuclei and cytoplasm, J. Cell Biol. 81: 316–335.PubMedCrossRefGoogle Scholar
  57. 57.
    Somlyo, A. V., Gonzalez-Serratos, H. Shuman, H., McClellan, G., and Somlyo, A. P., 1980, Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: An electron probe study, J. Cell Biol. 90: 577–594.CrossRefGoogle Scholar
  58. 58.
    Jungermann, K., and Katz, N., 1982, Functional hepatocellular heterogeneity, Hepatology 2: 385–395.PubMedCrossRefGoogle Scholar
  59. 59.
    Shank, R. E., Morrison, G., Cheng, C. H., Karl, I., and Schwartz, R., 1959, Cell heterogeneity within the hepatic lobule (quantitative histochemistry), J. Histochem. Cytochem. 7: 237–239.PubMedCrossRefGoogle Scholar
  60. 60.
    McDonald, B. E., and Johnson, B. C., 1965, Metabolic response to realimentation following chronic starvation in the adult male rat, J. Nutr. 87: 161–167.PubMedGoogle Scholar
  61. 61.
    Tsukuda, T., Thurman, R. G., and Kauffman, F. C., 1983, Effect of inducing agents on the distribution and kinetic properties of UPD-glucuronosyl transferase in periportal and pericentral zones of the liver, Fed. Proc. Fed. Am. Soc. Exp. Biol. 42: 912.Google Scholar
  62. 62.
    Sokolove, P. M., Wilcox, M. A., Thurman, R. G., and Kauffman, F. C., 1984, Stimulation of hepatic microsomal β-glucuronidase by calcium, Biochem. Biophys. Res. Commun. 121: 987–993.PubMedCrossRefGoogle Scholar
  63. 63.
    Ullrich, D., Fischer, G., Katz, N., and Bock, K. W., 1984, Intralobular distribution of UDP-glucuronosyltransferase in livers from untreated, 3-methylcholanthrene-and phenobarbital-treated rats, Chem.-Biol. Interact. 48: 181–190.PubMedCrossRefGoogle Scholar
  64. 64.
    Jungermann, K., Heilbronn, R., Katz, N., and Sasse, D., 1982, The glucose/glucose-6-phos-phate cycle in the periportal and perivenous zone of rat liver, Eur. J. Biochem. 123: 429–436.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Frederick C. Kauffman
    • 1
  • Franz M. Matschinsky
    • 2
  1. 1.Department of Pharmacology and Experimental TherapeuticsUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Department of Biochemistry and Biophysics, Diabetes Research CenterUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations