• Jeffrey Baron
  • Jeffrey M. Voigt
  • Thomas T. Kawabata
  • Jan A. Redick


Knowledge of the precise intratissue and intracellular localizations and distributions of enzymes and other biological molecules is often a prerequisite for understanding the metabolic and regulatory functions of these substances. Such information is also frequently required for defining the biological functions of specific cells and for elucidating the underlying biochemical bases for any differences in metabolic capabilities that may exist among morphologically different cell types as well as among morphologically similar cells. Unfortunately, the acquisition of this information is frequently hindered by a number of factors that include, but are not necessarily limited to, the presence of low tissue and/or cellular levels and/or activities of enzymes and other biological molecules and the fact that mammalian tissues are not composed of a single, homogeneous population of cells. In this respect, although the liver is commonly considered to be a fairly homogeneous tissue, it must be appreciated that significant differences in biochemical and physiological characteristics and functions have frequently been detected among hepatic parenchymal cells, or hepatocytes. A number of these differences are considered in greater detail in Sections III and IV of this volume.


Tissue Section Immunoperoxidase Staining Immunoperoxidase Technique Unlabeled Antibody Nonspecific Background Staining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coons, A. H., Creech, H. J., Jones, R. N., and Berliner, E., 1942, The demonstration of pneumococcal antigen in tissues by the use of a fluorescent antibody, J. Immunol. 45: 159–170.Google Scholar
  2. 2.
    Goldman, M., 1968, Fluorescent Antibody Methods, Academic Press, New York.Google Scholar
  3. 3.
    Sternberger, L. A., 1974, Immunocytochemistry, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  4. 4.
    Sternberger, L. A., 1979, Immunocytochemistry, 2nd ed., John Wiley, New York.Google Scholar
  5. 5.
    Bullock, G. R., and Petrusz, P. (eds.), 1982, Techniques in Immunocytochemistry, Vol. 1, Academic Press, London.Google Scholar
  6. 6.
    Bullock, G. R., and Petrusz, P. (eds.), 1983, Techniques in Immunocytochemistry, Vol. 2, Academic Press, London.Google Scholar
  7. 7.
    Wick, G., Traill, K. N., and Schauenstein, K. (eds.), 1982, Immunofluorescence Technology: Selected Theoretical and Clinical Aspects, Elsevier, Amsterdam.Google Scholar
  8. 8.
    Cuello, A. C. (ed.), 1983, Immunohistochemistry, John Wiley, Chichester.Google Scholar
  9. 9.
    Wordinger, R. J., Miller, G. W., and Nicodemus, D. S., 1983, Manual of Immunoperoxidase Techniques, American Society of Clinical Pathologists Press, Chicago.Google Scholar
  10. 10.
    Beutner, E. H., Nisengard, R. J., and Albini, B. (eds.), 1983, Defined Immunofluorescence and Related Cytochemical Methods, Ann. N. Y. Acad. Sci. 420. Google Scholar
  11. 11.
    Bourne, J. A., 1983, Handbook of Immunoperoxidase Staining Methods, DAKO Corp., Santa Barbara.Google Scholar
  12. 12.
    Polak, J. M., and Van Noorden, S. (eds.), 1983, Immunocytochemistry: Practical Applications in Pathology and Biology, John Wright, Bristol.Google Scholar
  13. 13.
    Baron, J., Redick, J. A., Greenspan, P., and Taira, Y., 1978, Immunohistochemical localization of NADPH-cytochrome c reductase in rat liver, Life Sci. 22: 1097–1102.PubMedCrossRefGoogle Scholar
  14. 14.
    Kapke, G. F., Redick, J. A., and Baron, J., 1978, Immunohistochemical demonstration of an adrenal ferredoxin-like iron-sulfur protein in rat hepatic mitochondria, J. Biol. Chem. 253: 8604–8608.PubMedGoogle Scholar
  15. 15.
    Baron, J., Redick, J. A., and Guengerich, F. P., 1978, Immunohistochemical localizations of cytochromes P-450 in rat liver, Life Sci. 23: 2627–2632.PubMedCrossRefGoogle Scholar
  16. 16.
    Baron, J., Redick, J. A., and Guengerich, F. P., 1980, Immunohistochemical localization of epoxide hydratase in rat liver, Life Sci. 26: 489–493.PubMedCrossRefGoogle Scholar
  17. 17.
    Taira, Y., Redick, J. A., and Baron, J., 1980, An immunohistochemical study on the localization and distribution of NADPH-cytochrome c (P-450) reductase in rat liver, Mol. Pharmacol. 17: 374–381.PubMedGoogle Scholar
  18. 18.
    Taira, Y., Greenspan, P., Kapke, G. F., Redick, J. A., and Baron, J., 1980, Effects of phenobarbital, pregnenolone-16α-carbonitrile, and 3-methylcholanthrene pretreatments on the distribution of NADPH-cytochrome c (P-450) reductase within the liver lobule, Mol. Pharmacol. 18: 304–312.PubMedGoogle Scholar
  19. 19.
    Redick, J. A., Kawabata, T. T., Guengerich, F. P., Krieter, P. A., Shires, T. K., and Baron, J., 1980, Distributions of monooxygenase components and epoxide hydratase within livers of untreated male rats, Life Sci. 27: 2465–2470.PubMedCrossRefGoogle Scholar
  20. 20.
    Baron, J., Redick, J. A., and Guengerich, F. P., 1981, An immunohistochemical study on the localizations and distributions of phenobarbital-and 3-methylcholanthrene-inducible cytochromes P-450 within livers of untreated rats, J. Biol. Chem. 256: 5931–5937.PubMedGoogle Scholar
  21. 21.
    Kawabata, T. T., Guengerich, F. P., and Baron, J., 1981, An immunohistochemical study on the localization and distribution of epoxide hydrolase within livers of untreated rats, Mol. Pharmacol. 20: 709–714.PubMedGoogle Scholar
  22. 22.
    Baron, J., Redick, J. A., and Guengerich, F. P., 1982, Effects of 3-methylcholanthrene, β-naphthoflavone, and phenobarbital on the 3-methylcholanthrene-inducible isozyme of cyto-chrome P-450 within centrilobular, midzonal, and periportal hepatocytes, J. Biol. Chem. 257: 953–957.PubMedGoogle Scholar
  23. 23.
    Redick, J. A., Jakoby, W. B., and Baron, J., 1982, Immunohistochemical localization of glutathione S-transferases in livers of untreated rats, J. Biol. Chem. 257: 15, 200–15, 203.Google Scholar
  24. 24.
    Kawabata, T. T., Guengerich, F. P., and Baron, J., 1983, Effects of phenobarbital, trans-stilbene oxide, and 3-methylcholanthrene on epoxide hydrolase within centrilobular, midzonal, and periportal regions of rat liver, J. Biol. Chem. 258: 7767–7773.PubMedGoogle Scholar
  25. 25.
    Smith, M. T., Redick, J. A., and Baron, J., 1983, Quantitative immunohistochemistry: A comparison of microdensitometric analysis of unlabeled antibody peroxidase-antiperoxidase staining and of microfluorometric analysis of indirect fluorescent antibody staining for NADPH-cytochrome c (P-450) reductase in rat liver, J. Histochem. Cytochem. 31: 1183–1189.PubMedCrossRefGoogle Scholar
  26. 26.
    Redick, J. A., Kapke, G. F., Van Orden, L. S., III, and Baron, J., 1977, Immunohistochemical localization of adrenal ferredoxin in bovine adrenal cortex, Life Sci. 20: 1139–1148.PubMedCrossRefGoogle Scholar
  27. 27.
    Baron, J., Redick, J. A., Kapke, G. F., and Van Orden, L. S., III, 1978, Immunohistochemical localization of adrenal ferredoxin and distribution of adrenal ferredoxin and cytochrome P-450 in the rat adrenal, Biochim. Biophys. Acta 540: 443–454.CrossRefGoogle Scholar
  28. 28.
    Taira, Y., Redick, J. A., Greenspan, P., and Baron, J., 1979, Immunohistochemical studies on electron transport proteins associated with cytochromes P-450 in steroidogenic tissues. II. Microsomal NADPH-cytochrome c reductase in the rat adrenal, Biochim. Biophys. Acta 583: 148–158.PubMedCrossRefGoogle Scholar
  29. 29.
    Kawabata, T. T., Wick, D. G., Guengerich, F. P., and Baron, J., 1984, Immunohistochemical localization of carcinogen-metabolizing enzymes within the rat and hamster exocrine pancreas, Cancer Res. 44: 215–223.PubMedGoogle Scholar
  30. 30.
    Ishii-Ohba, H., Guengerich, F. P., and Baron, J., 1985, Localization of epoxide-metabolizing enzymes in rat testis, Biochim. Biophys. Acta 802: 326–334.CrossRefGoogle Scholar
  31. 31.
    Baron, J., Kawabata, T. T., Redick, J. A., Knapp, S. A., Wick, D. G., Wallace, R. B., Jakoby, W. B., and Guengerich, F. P., 1983, Localization of carcinogen-metabolizing enzymes in human and animal tissues, in: Extrahepatic Drug Metabolism and Chemical Carcinogenesis (J. Rydstrom, J. Montelius, and M. Bengtsson, eds.), pp. 73–88. ElsevierlNorth-Holland, Amsterdam.Google Scholar
  32. 32.
    Yamamoto, N., and Yasuda, K., 1977, Use of a water soluble carbodiimide as a fixing agent, Acta Histochem. Cytochem. 10: 14–37.CrossRefGoogle Scholar
  33. 33.
    Hand, A. R., and Hassell, J. R., 1976, Tissue fixation with diimidoesters as an alternative to formaldehyde. II. Cytochemical and biochemical studies of rat liver fixed with dimethylsu-berimidate, J. Histochem. Cytochem. 24: 1000–1011.PubMedCrossRefGoogle Scholar
  34. 34.
    Pearse, A. G. E., and Polak, J. M., 1975, Bifunctional reagents as vapour-and liquid-phase fixatives for immunohistochemistry, Histochem. J. 7: 179–186.PubMedCrossRefGoogle Scholar
  35. 35.
    Morrison, M., Steele, W., and Danner, D. J., 1969, The reaction of benzoquinone with amines and proteins, Arch. Biochem. Biophys. 134: 515–523.PubMedCrossRefGoogle Scholar
  36. 36.
    Lorenz, K., 1976, On the nature of protein benzoquinone complexes, Experientia 32: 1502–1503.CrossRefGoogle Scholar
  37. 37.
    Brandt, J., Anderson, L. O., and Porath, J., 1975, Covalent attachment of proteins to poly-saccharide carriers by means of benzoquinone, Biochim. Biophys. Acta 386: 196–202.PubMedGoogle Scholar
  38. 38.
    Mason, H. S., and Peterson, E. W., 1965, Melanoproteins. I. Reactions between enzyme-generated quinones and amino acids, Biochim. Biophys. Acta 111: 134–146.PubMedCrossRefGoogle Scholar
  39. 39.
    Leterrier, F., Balny, C. and Douzou, P., 1967, Formation de complexes entre la p-benzosemi-quinone et l’imidazole et ses derives, Biochim. Biophys. Acta 154: 444–479.Google Scholar
  40. 40.
    Bentley, P., Waechter, F., Oesch, F., and Staubli, W., 1979, Immunochemical localization of epoxide hydratase in rat liver: Effects of 2-acetylaminofluorene, Biochem. Biophys. Res. Commun. 91: 1101–1108.PubMedCrossRefGoogle Scholar
  41. 41.
    Wolf, C. R., Moll, E., Friedberg, T., Oesch, F., Buchmann, A., Kuhlmann, W. D., and Kunz, H. W., 1984, Characterization, localization and regulation of a novel phenobarbital-inducible form of cytochrome P-450, compared with three further P-450-isoenzymes, NADPH P-450 reductase, glutathione transferases and microsomal epoxide hydrolase, Carcinogenesis 5: 993–1001.PubMedCrossRefGoogle Scholar
  42. 42.
    Huang, S., Minassian, H., and More, J. D., 1976, Application of immunofluorescent staining in paraffin sections improved by trypsin digestion, Lab. Invest. 35: 383–396.PubMedGoogle Scholar
  43. 43.
    Curran, R. C., and Gregory, J., 1977, The unmasking of antigens in paraffin sections of tissues by trypsin, Experientia 33: 1400–1401.PubMedCrossRefGoogle Scholar
  44. 44.
    Brozman, M., 1978, Immunohistochemical analysis of formaldehyde and trypsin-or pepsin-treated material, Acta Histochem. 63: 251–260.PubMedCrossRefGoogle Scholar
  45. 45.
    Mepham, B. L., Frater, W., and Mitchell, B. S., 1979, The use of proteolytic enzymes to improve immunoglobulin staining by the PAP technique, Histochem. J. 11: 345–357.PubMedCrossRefGoogle Scholar
  46. 46.
    Radaszkiewicz, T., Dragosics, B., Abdelfattahgad, M., and Denk, H., 1979, Effect of protease pretreatment on immunologic demonstrations of hepatitis B-surface antigen in conventional paraffin-embedded liver biopsy material, J. Immunol. Methods 29: 27–33.PubMedCrossRefGoogle Scholar
  47. 47.
    Denk, H., Radaszkiewicz, T., and Weirich, E., 1977, Pronase pretreatment of tissue sectionsenhances sensitivity of the unlabeled antibody-enzyme (PAP) technique, J. Immunol. Methods 15: 163–167.PubMedCrossRefGoogle Scholar
  48. 48.
    Tokuyasu, K. T., 1973, A technique for ultramicrotomy of cell suspensions and tissues, J. Cell Biol. 57: 551–565.PubMedCrossRefGoogle Scholar
  49. 49.
    Sternberger, L. A., Hardy, P. H., Cuculis, J. J., and Meyer, H. G., 1970, The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes, J. Histochem. Cytochem. 18: 315–333.PubMedCrossRefGoogle Scholar
  50. 50.
    Hsu, S. M., Raine, L., and Fanger, H., 1981, Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: A comparison between ABC and unlabeled antibody (PAP) procedures, J. Histochem. Cytochem. 29: 577–580.PubMedCrossRefGoogle Scholar
  51. 51.
    Bergroth, V., Reitamo, S., Konttinen, Y. T., and Lalla, M., 1980, Sensitivity and nonspecific staining of varius immunoperoxidase techniques, Histochemistry 68: 17–22.PubMedCrossRefGoogle Scholar
  52. 52.
    Burns, J., 1975, Background staining and sensitivity of the unlabeled antibody-enzyme (PAP) method. Comparison with the peroxidase labeled sandwich method using formalin fixed paraffin embedded material, Histochemistry 43: 291–294.PubMedCrossRefGoogle Scholar
  53. 53.
    Nakane, P. K., and Pierce, G. B., 1966, Enzyme labeled antibodies: Preparation and application for the localization of antigens, J. Histochem. Cytochem. 14: 929–931.PubMedCrossRefGoogle Scholar
  54. 54.
    Nakane, P. K., and Pierce, G. B., 1967, Enzyme-labeled antibodies for the light-and elec-tronmicroscopic localization of tissue antigens, J. Cell Biol. 33: 307–318.PubMedCrossRefGoogle Scholar
  55. 55.
    Avrameas, S., and Uriel, J., 1966, Methode de marquage d’antigènes et d’anticorps avec des enzymes et son application en immunodiffision, C. R. Acad. Sci. 262: 2543–2545.Google Scholar
  56. 56.
    Avrameas, S., 1967, Coupling of enzymes to proteins with glutaraldehyde. Use of conjugates for the detection of antigens and antibodies, Immunochemistry 6: 43–52.CrossRefGoogle Scholar
  57. 57.
    Clark, C.A., Downs, E. C., and Primus, F. J., 1982, An unlabeled antibody method using glucose oxidase-antiglucose oxidase complexes (GAG): A sensitive alternative to immunoperoxidase for the detection of tissue antigens, J. Histochem. Cytochem. 30: 27–34.PubMedCrossRefGoogle Scholar
  58. 58.
    Graham, R. C., and Karnovsky, M. J., 1966, The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique, J. Histochem. Cytochem. 12: 291–302.CrossRefGoogle Scholar
  59. 59.
    Seligman, A. M., Karnovsky, M. J., Wasserkrug, H. L., and Hanker, J. S., 1968, Nondroplet untrastructural demonstration of cytochrome oxidase with a polymerizing osmophilic reagent, diaminodenzidine (DAB), J. Cell Biol. 38: 1–14.PubMedCrossRefGoogle Scholar
  60. 60.
    Straus, W., 1982, Imidazole increases the sensitivity of the cytochemical reaction of peroxidase with diaminobenzidine at a neutral pH, J. Histochem. Cytochem. 30: 491–493.PubMedCrossRefGoogle Scholar
  61. 61.
    Adams, J. C., 1981, Heavy metal intensification of DAB-based HRP reaction product, J. Histochem. Cytochem. 29: 775–777.PubMedCrossRefGoogle Scholar
  62. 62.
    Gallyas, F., Gorcs, T., and Merchenthaler, I., 1982, High-grade intensification of the end-product of the diaminobenzidine reaction for peroxidase histochemistry, J. Histochem. Cytochem. 30: 183–184.PubMedCrossRefGoogle Scholar
  63. 63.
    Hsu, S.-M., and Soban, E., 1982, Color modification of diaminobenzidine (DAB) precipitation by metallic ions and its application for double immunohistochemistry, J. Histochem. Cytochem. 30: 1079–1082.PubMedCrossRefGoogle Scholar
  64. 64.
    Hanker, J. S., Yates, P. E., Metz, C. B., and Rustioni, A., 1977, A new, specific, sensitive, and non-carcinogenic reagent for the demonstration of horseradish peroxidase, Histochem. J. 9: 789–792.PubMedCrossRefGoogle Scholar
  65. 65.
    Graham, R. C., Ludholm, U., and Karnovsky, M. J., 1965, Cytochemical demonstration of peroxidase activity with 3-amino-9-ethylcarbazole, J. Histochem. Cytochem. 13: 150–152.PubMedCrossRefGoogle Scholar
  66. 66.
    Nakane, P. K., 1968, Simultaneous localization of multiple tissue antigens using the peroxidase-labeled antibody method: A study in the pituitary glands of the rat, J. Histochem. Cytochem. 16: 557–560.PubMedCrossRefGoogle Scholar
  67. 67.
    Straus, W., 1971, Inhibition of peroxidase by methanol and by methanol-nitroferricyanide for use in immunoperoxidase procedures, J. Histochem. Cytochem. 19: 682–688.PubMedCrossRefGoogle Scholar
  68. 68.
    Streefkerk, J. G., 1972, Inhibition of erythrocyte pseudoperoxidase activity by treatment with hydrogen peroxide following methanol, J. Histochem. Cytochem. 20: 829–831.PubMedCrossRefGoogle Scholar
  69. 69.
    Straus, W., 1972, Phenylhydrazine as an inhibitor of horseradish peroxidase for use in immunoperoxidase procedures, J. Histochem. Cytochem. 20: 949–951.PubMedCrossRefGoogle Scholar
  70. 70.
    Taylor, C. R., 1978, Immunoperoxidase techniques: Practical and theoretical aspects, Arch. Pathol. Lab. Med. 102: 113–121.PubMedGoogle Scholar
  71. 71.
    Heyderman, E., 1979, Immunoperoxidase techniques in histopathology: Application, methods, and controls, J. Clin. Pathol. 32: 971–978.PubMedCrossRefGoogle Scholar
  72. 72.
    DeLellis, R. A., Sternberger, L. A., Mann, R. B., Banks, P. M., and Nakane, P. K., 1979, Immunoperoxidase technics in diagnostic pathology. Report of a workshop sponsored by the National Cancer Institute, Am. J. Clin. Pathol. 71: 483–488.PubMedGoogle Scholar
  73. 73.
    Bosman, F.T., and Nieuwenhuijzen Kruseman, A. C., 1979, Clinical applications of the enzyme labeled antibody method. Immunoperoxidase methods in diagnostic pathology, J. Histochem. Cytochem. 27: 1140–1147.PubMedCrossRefGoogle Scholar
  74. 74.
    Maclver, A. G., and Mepham, B. L., 1982, Immunoperoxidase techniques in human renal biopsy, Histopathology 6: 249–267.CrossRefGoogle Scholar
  75. 75.
    Lewis, R. E., Johnson, W. W., and Cruse, J. M., 1983, Pitfalls and caveats in the methodology for immunoperoxidase staining in surgical pathologic diagnosis, Surv. Synth. Pathol. Res. 1: 134–152.Google Scholar
  76. 76.
    Bosman, F. T., 1983, Some recent developments in immunocytochemistry, Histochem. J. 15: 189–200.PubMedCrossRefGoogle Scholar
  77. 77.
    Espinoza, C. G., Pillarisetti, S. G., and Azar, H. A., 1983, Selected applications of immunoperoxidase techniques in surgical pathology, Ann. Clin. Lab. Sci. 13: 240–248.PubMedGoogle Scholar
  78. 78.
    Towbin, H., Stachelin, T., and Gordon, J., 1976, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedures and some applications, Proc. Natl. Acad. Sci. U.S.A. 76: 4350–4354.CrossRefGoogle Scholar
  79. 79.
    Erlandsen, S. L., Parsons, J. A., Burke, J. P., Redick, J. A., Van Orden, D. E., and Van Orden, L. S., III, 1975, A modification of the unlabeled antibody enzyme method using heterologous antisera for the light microscopic and ultrastructural localization of insulin, glucagon and growth hormone, J. Histochem. Cytochem. 23: 666–677.PubMedCrossRefGoogle Scholar
  80. 80.
    Bayer, E., Skutelsky, E., and Wilchek, M., 1979, The avidin-biotin method in affinity cytochemistry, Methods Enzymol. 62: 308–316.PubMedCrossRefGoogle Scholar
  81. 81.
    Dakshinamurti, K., and Mistry, S. P., 1963, Tissue and intracellular distribution of biotin-C14OOH in rats and chicks, J. Biol. Chem. 238: 297–301.PubMedGoogle Scholar
  82. 82.
    Wood, G. S., and Warnke, R., 1981, Suppression of endogenous avidin binding activity in tissues and its relevance to biotin-avidin detection systems, J. Histochem. Cytochem. 29: 1196–1204.PubMedCrossRefGoogle Scholar
  83. 83.
    Nairn, R. C., 1976, Fluorescent Protein Tracing, 4th ed., Churchill Livingstone, New York.Google Scholar
  84. 84.
    Ploem, J. S., 1970, Standards for fluorescence microscopy, in: Standardization in Immuno-fluorescence (E. J. Holbrow, ed.), pp. 137–153, Blackwell, London.Google Scholar
  85. 85.
    Storz, H., 1982, Investigations of fading of immunofluorescence objects, Acta Histochem. 71: 2–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Johnson, G. D., Davidson, R. S., McNamme, K. C., Russell, G., Goodwin, D., and Holborow, E. T., 1982, Fading of fluorescence during microscopy: A study of the phenomenon and its remedy, J. Immunol. Methods 55: 231–242.PubMedCrossRefGoogle Scholar
  87. 87.
    Huff, J. C., Weston, W. L., and Wanda, K. D., 1982, Enhancement of specific immunoflu-orescent findings with use of a para-phenylenediamine mounting buffer, J. Invest. Dermatol. 78: 449–450.PubMedCrossRefGoogle Scholar
  88. 88.
    Platt, J. L., and Michael, A. F., 1983, Retardation of fading and enhancement of intensity of immunofluorescence of p-phenylenediamine, J. Histochem. Cytochem. 31: 840–842.PubMedCrossRefGoogle Scholar
  89. 89.
    Langanger, G., De Mey, J., and Adam, H., 1983, l, 4-Diazobicyclo-(2, 2, 2)-octane (DABCO) is retarding fading of immunofluorescence preparations, Mikroskopie 40: 237–241.PubMedGoogle Scholar
  90. 90.
    Giloh, H., and Sedat, J. W., 1982, Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by H-propyl gallate, Science 217: 1252–1255.PubMedCrossRefGoogle Scholar
  91. 91.
    Nairn, R. C., Herzog, F., Ward, H. A., and De Boer, W. G. R. M., 1969, Microphotometry in immunofluorescence, Clin. Exp. Immunol. 4: 697–705.PubMedGoogle Scholar
  92. 92.
    Hiramoto, R., Bernecky, J., Jurand, J., and Hamlin, M., 1964, The effect of hydrogen ion concentration on fluorescent labeled antibodies, J. Histochem. Cytochem. 12: 271–274.PubMedCrossRefGoogle Scholar
  93. 93.
    Halliday, D., Davey, F. R., Call, F., and Marucci, A. A., 1977, Identification of intracellular immunoglobulin in extramedullary myeloma, Arch. Pathol. Lab. Med. 101: 522–525.PubMedGoogle Scholar
  94. 94.
    Mason, D. Y., and Sammons, R. E., 1979, The labeled antigen method of immunoenzyme staining, J. Histochem. Cytochem. 27: 832–840.PubMedCrossRefGoogle Scholar
  95. 95.
    Falini, B., de Solas, I., Halverson, C., Parker, J. W., and Taylor, C. R., 1982, Double labeled-antigen method for demonstration of intracellular antigens in paraffin-embedded tissues, J. Histochem. Cytochem. 30: 21–26.PubMedCrossRefGoogle Scholar
  96. 96.
    El Etreby, M. F., and Fath el Bab, M. R., 1977, The utility of antisera to canine growth hormone and canine prolactin for immunocytochemical staining of dog pituitary gland, His-tochemistry 53: 1–15.Google Scholar
  97. 97.
    Erlandsen, S. L., Hegre, O. D., Parsons, J. A., McEvoy, R. C., and Elde, R. P., 1976, Pancreatic islet cell hormones: Distribution of cell types in the islet and evidence for the presence of somatostatin and gastrin within the D cell, J. Histochem. Cytochem. 24: 883–897.PubMedCrossRefGoogle Scholar
  98. 98.
    Campbell, G. T., and Bhatnagar, A. S., 1976, Simultaneous visualization by light microscopy of two pituitary hormones in a single tissue section using a combination of indirect immu-nohistochemical methods, J. Histochem. Cytochem. 24: 448–452.PubMedCrossRefGoogle Scholar
  99. 99.
    Sternberger, L. A., and Joseph, S. A., 1979, The unlabeled antibody method: Contrasting color staining of paired pituitary hormones without antibody removal, J. Histochem. Cytochem. 27: 1424–1436.PubMedCrossRefGoogle Scholar
  100. 100.
    Vaines, K., and Brandtzaeg, P., 1982, Comparison of paired immunofluorescence and paired immunoenzyme staining methods based on primary antisera from the same species, J. Histochem. Cytochem. 30: 518–524.CrossRefGoogle Scholar
  101. 101.
    Korsrud, F. R., and Brandtzaeg, P., 1982, Characterization of epithelial elements in human major salivary glands by functional markers: Localization of amylase, lactoferrin, lysozyme, secretory component, and secretory immunoglobulins by paired immunofluorescence staining, J. Histochem. Cytochem. 30: 657–666.PubMedCrossRefGoogle Scholar
  102. 102.
    Enestrom, S., 1982, Immunofluorescent staining of epon embedded kidney sections through simultaneous use of two different fluorochrome-conjugated antisera, Stain Technol. 57: 31–38.PubMedGoogle Scholar
  103. 103.
    Hiramoto, R., and Hamlin, M., 1965, Detection of two antibodies in single plasma cells by the paired fluorescence technique, J. Immunol. 95: 214–224.PubMedGoogle Scholar
  104. 104.
    Scott, D. G., 1960, Immuno-histochemical studies of connective tissue: The use of contrasting fluorescent protein tracers in the comparison of two antisera, Immunology 3: 226–236.PubMedGoogle Scholar
  105. 105.
    Shiino, M., and Rennels, E. G., 1966, Cellular localization of prolactin and growth hormone in the anterior pituitary glands of the rat and rabbit, Tex. Rep. Biol. Med. 24: 659–673.Google Scholar
  106. 106.
    Silverstein, A. M., 1957, Contrasting fluorescent labels for two antibodies, J. Histochem. Cytochem. 5: 94–95.CrossRefGoogle Scholar
  107. 107.
    Beutner, E. H., Holborow, E. J., and Johnson, G. D., 1956, A new fluorescent antibody method: Mixed antiglobulin immunofluorescence or labelled antigen indirect immunofluorescence staining, Nature (London) 208: 353–355.CrossRefGoogle Scholar
  108. 108.
    Notani, G. W., Parsons, J. A., and Erlandsen, S. L., 1979, Versatility of Staphylococcus aureus protein A in immunocytochemistry. Use in unlabeled antibody enzyme system and fluorescent methods, J. Histochem. Cytochem. 27: 1438–1444.PubMedCrossRefGoogle Scholar
  109. 109.
    Vaines, K., and Brandtzaeg, P., 1981, Unlabeled antibody peroxidase-antiperoxidase method combined with direct immunofluorescence, J. Histochem. Cytochem. 29: 703–711.CrossRefGoogle Scholar
  110. 110.
    Lechago, J., Sun, N. C. J., and Weinstein, W. M., 1979, Simultaneous visualization of two antigens in the same tissue section by combining immunoperoxidase with immunofluorescence techniques, J. Histochem. Cytochem. 27: 1221–1225.PubMedCrossRefGoogle Scholar
  111. 111.
    Brozman, M., Chorvath, D., and Jakubovsky, J., 1977, Immunohistochemical staining using coupled immunofluorescence and immunocomplex technique, Acta Histochem. 59: 61–69.PubMedCrossRefGoogle Scholar
  112. 112.
    Deeley, E. S., 1955, An integrating microdensitometer for biological cells, J. Sci. Instrum. 32: 263–267.CrossRefGoogle Scholar
  113. 113.
    Isaka, K., 1972, Introduction to Microspectrophotometry, Olympus Optical Co., Tokyo.Google Scholar
  114. 114.
    Altman, F. P., 1975, Quantitation in histochemistry: A review of some commercially available microdensitometers, Histochem. J. 7: 375–395.PubMedCrossRefGoogle Scholar
  115. 115.
    Chayen, J., 1978, The cytochemical approach to hormone assay, Int. Rev. Cytol. 53: 333–396.PubMedCrossRefGoogle Scholar
  116. 116.
    Chayen, J., 1978, Microdensitometry, in: Biochemical Mechanisms of Liver Injury (T. F. Slater, ed.), pp. 257–291, Academic Press, New York.Google Scholar
  117. 117.
    Grove, G. L., Lavker, R. M., and Kligman, A. M., 1978, Use of microspectrophotometry in dermatological investigations, J. Soc. Cosmet. Chem. 29: 537–544.Google Scholar
  118. 118.
    Bahr, G. F., 1979, Frontiers of quantitative cytochemistry. A review of recent developments and potentials, Anal. Quant. Cytol. 1: 1–19.PubMedGoogle Scholar
  119. 119.
    Cabrini, R. L., 1981, Practical applications of the microphotometric quantification of his-toenzyme reactions, Histochem. J. 13: 241–250.PubMedCrossRefGoogle Scholar
  120. 120.
    Duijndam, W. A. L., Smeulders, A. W. M., Van Duijn, P., and Verweij, A. C., 1980, Optical errors in scanning stage absorbance cytophotometry. I. Procedures for correcting apparent integrated absorbance values for distributional, glare, and diffraction errors, J. Histochem. Cytochem. 28: 388–394.PubMedCrossRefGoogle Scholar
  121. 121.
    Duijndam, W. A. L., Van Duijn, P., and Riddersma, S. H. 1980, Optical errors in scanning stage absorbance cytophotometry. II. Application of correction factors for residual distributional error, glare, and diffraction error in practical cytophotometry, J. Histochem. Cytochem. 28: 395–400.PubMedCrossRefGoogle Scholar
  122. 122.
    Baker, J. R., 1958, Principles of Biological Microtechnique, Methuen, London.Google Scholar
  123. 123.
    Lowry, O. H., and Passonneau, J., 1972, A Flexible System of Enzymatic Analysis, Academic Press, New York.Google Scholar
  124. 124.
    Van Orden, L. S., III, 1970, Quantitative histochemistry of biogenic amines. A simple mi-crospectrofluorometer, Biochem. Pharmacol. 19: 1105–1117.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Jeffrey Baron
    • 1
  • Jeffrey M. Voigt
    • 1
  • Thomas T. Kawabata
    • 1
  • Jan A. Redick
    • 1
  1. 1.The Toxicology Center, Department of PharmacologyThe University of Iowa College of MedicineIowa CityUSA

Personalised recommendations