Zonal Signal Heterogeneity and Induction of Hepatocyte Heterogeneity

  • Kurt Jungermann


Hepatocytes in the periportal (afferent) and perivenous (efferent) zones of the liver parenchyma differ in their enzyme activities and subcellular structures. This heterogeneity has been known for many years, first on a descriptive1,2, and then increasingly on a functional level.3–5. On the assumption that the distribution of a key enzyme indicates the predominant localization of the corresponding metabolic function, the model of “metabolic zonation” was proposed6 and developed (Table I). The available evidence indicates that the different metabolic capacities of the two zones are indeed reflected as different metabolic rates or activities (see Chapters 9–15).


Pyruvate Kinase Partial Hepatectomy Hepatocyte Culture Phosphoenolpyruvate Carboxykinase Perivenous Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Novikoff, A.B., 1959, Cell heterogeneity within the hepatic lobule of the rat (staining reactions), J. Histochem. Cytochem. 7: 240–244.PubMedCrossRefGoogle Scholar
  2. 2.
    Rappaport, A. M., 1960, Betrachtungen zur Pathophysiologie der Leberstruktur, Klin. Woch-enschr. 38: 561–577.CrossRefGoogle Scholar
  3. 3.
    Jungermann, K., and Sasse, D., 1978, Heterogeneity of liver parenchymal cells, Trends Biochem. Sci. 3: 198–202.CrossRefGoogle Scholar
  4. 4.
    Gumucio, J. J., and Miller, D. L., 1981, Functional implications of liver cell heterogeneity, Gastroenterology 80: 393–403.PubMedGoogle Scholar
  5. 5.
    Jungermann, K., and Katz, N., 1982, Functional hepatocellular heterogeneity, Hepatology 2: 385–395.PubMedCrossRefGoogle Scholar
  6. 6.
    Katz, N., and Jungermann, K., 1976, Autoregulatory shift from fructolysis to lactate gluco-neogenesis in rat hepatocyte suspensions: The problem of metabolic zonation of liver parenchyma, Hoppe-Seyler’s Z. Physiol. Chem. 357: 359–375.PubMedCrossRefGoogle Scholar
  7. 7.
    Grote, J., 1980, Gewebsatmung, in: Physiologie des Menschen, 20th ed. (R. F. Schmidt and G. Thews, eds.), p. 560, Springer-Verlag, Berlin, Heidelberg, and New York.Google Scholar
  8. 8.
    Thews, O. G., 1980, Atemgastransport und Säure-Basen-Status des Blutes, in: Physiologie des Menschen, 20th ed. (R. F. Schmidt and G. Thews, eds.), p. 543, Springer-Verlag, Berlin, Heidelberg, and New York.Google Scholar
  9. 9.
    Balks, H. J., and Jungermann, K., 1984, Regulation of the peripheral insulin/glucagon ratio by the liver, Eur. J. Biochem. 141: 645–650.PubMedCrossRefGoogle Scholar
  10. 10.
    Strubbe, J. H., and Steffens, A. B., 1977, Blood glucose levels in portal and peripheral circulation and their relation to food intake in the rat, Physiol. Behav. 19: 303–307.PubMedCrossRefGoogle Scholar
  11. 11.
    Jungermann, K., Heilbronn, R., Katz, N., and Sasse, D., 1982, The glucose/glucose-6-phos-phate cycle in the periportal and perivenous zone of rat liver, Eur. J. Biochem. 123: 429–436.PubMedCrossRefGoogle Scholar
  12. 12.
    Remesy, C., Fafournoux, P., and Demigne, C., 1983, Control of hepatic utilization of serine, glycine and threonine in fed and starved rats, J. Nutr. 113: 28–39.PubMedGoogle Scholar
  13. 13.
    Remesy, C., and Demigne C., 1983, Changes in availability of glucogenic and ketogenic substrates and liver metabolism in fed or starved rats, Ann. Nutr. Metab. 27: 57–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Katz, N., and Giffhorn, S., 1983, Glucose-and insulin-dependent induction of ATP citrate lyase in primary cultures of rat hepatocytes, Biochem. J. 212: 65–71.PubMedGoogle Scholar
  15. 15.
    Katz, N., and Ick, M., 1981, Induction of acetyl-CoA carboxylase in primary rat hepatocyte cultures by glucose and insulin, Biochem. Biophys. Res. Commun. 100: 703–709.PubMedCrossRefGoogle Scholar
  16. 16.
    Remesy, C., and Demigne C., and Aufrere, J., 1978, Interorgan relationships between glucose, lactate and amino acids in rats fed on high carbohydrate or high protein diets, Biochem. J. 170: 321–329.Google Scholar
  17. 17.
    Yamamoto, H., Aikawa, T., Matsutaka, H., Okuda, T., and Ishikawa, E., 1974, Interorganal relationships of amino acid metabolism in fed rats, Am. J. Physiol. 226: 1428–1433.PubMedGoogle Scholar
  18. 18.
    Hofmann, A. F., Molino, G., Milanese, M., and Belforte, G., 1983, Description and simulation of a physiological pharmacokinetic model for the metabolism and enterohepatic circulation of bile acids in man, J. Clin. Invest. 71: 1003–1022.PubMedCrossRefGoogle Scholar
  19. 19.
    Cronholm, T., and Sjövall, J., 1967, Bile acids in portal blood of rats fed different diets and cholestyramine, Eur. J. Biochem. 2: 375–383.PubMedCrossRefGoogle Scholar
  20. 20.
    Okishio, T., and Nair, P. P., 1966, Studies on bile acids: Some observations on the intracellular localization of major bile acids in rat liver, Biochemistry 5: 3662–3668.PubMedCrossRefGoogle Scholar
  21. 21.
    Striffler, J. S., and Curry, D. L., 1979, Effect of fasting on insulin removal by liver of perfused liver-pancreas, Am. J. Physiol. 237: E349–E355.PubMedGoogle Scholar
  22. 22.
    Yamaguchi, N., and Garceau, D., 1980, Correlations between hemodynamic parameters of the liver and norepinephrine release upon hepatic nerve stimulation in the dog, Can. J. Physiol. Pharmacol. 58: 1347–1355.PubMedGoogle Scholar
  23. 23.
    Thiede, H. M., and Kehr, W., 1981, Conjoint radioenzymatic measurements of catecholamines, their catechol metabolites and DOPA in biological samples, Naunyn-Schmiedeberg’s Arch. Pharmacol. 318: 19–28.CrossRefGoogle Scholar
  24. 24.
    McCormick, J. R., Herman, A. M., Lien, W. M., and Egdahl, R. H., 1974, Hydrocortisone metabolism in the adrenalectomized dog: The quantitative significance of each organ system in the total metabolic clearance of hydrocortisone, Endocrinology 94: 17–26.PubMedCrossRefGoogle Scholar
  25. 25.
    Paterson, N., and Harrison, M., 1972, The splanchnic and hepatic uptake of cortisol in conscious and anaesthetized sheep, J. Endocrinol. 55: 335–350.PubMedCrossRefGoogle Scholar
  26. 26.
    Manin, M., Tournaire, C., and Delost, P., 1983, The splanchnic removal of cortisol from plasma of anaesthetized guinea pigs, J. Endocrinol. 96: 273–280.PubMedCrossRefGoogle Scholar
  27. 27.
    Zipser, R.D., Speckart, P.F., Zia, P.K., Edmiston, W.A., Lau, F.Y., and Horton, R., 1976, The effect of ACTH and cortisol on aldosterone and cortisol clearance and distribution in plasma and whole blood, J. Clin. Endocrinol. Metab. 43: 1101–1109.PubMedCrossRefGoogle Scholar
  28. 28.
    Chavarri, M., Lütscher, J. A., Dowdy, A. J., and Ganguly, A., 1977, The effects of temperature and plasma cortisol on distribution of aldosterone between plasma and red blood cells: Influence on metabolic clearance rate and on hepatic and renal extraction of aldosterone, J. Clin. Endocrinol. Metab. 44: 752–759.PubMedCrossRefGoogle Scholar
  29. 29.
    Pritchard, J. B., O’Connor, N., Oliver, J. M., and Berlin, R. D., 1975, Uptake and supply of purine compounds by the liver, Am. J. Physiol. 229: 967–972.PubMedGoogle Scholar
  30. 30.
    Newby, A. C., 1984, Adenosine and the concept of “retaliatory metabolites,” Trends Biochem. Sci. 9: 42–44.CrossRefGoogle Scholar
  31. 31.
    Westfall, T. C., 1977, Local regulation of adrenergic neurotransmission, Physiol. Rev. 57: 659–728.PubMedGoogle Scholar
  32. 32.
    Joost, H. G., and Steinfelder, H. J., 1983, Modulation of insulin sensitivity by adenosine: Effects on glucose transport, lipid synthesis, and insulin receptors of the adipocyte, Mol. Pharmacol. 22: 614–618.Google Scholar
  33. 33.
    Lautt, W. W., 1980, Hepatic nerves, Can. J. Physiol. Pharmacol. 58: 105–123.PubMedCrossRefGoogle Scholar
  34. 34.
    Forssmann, W. G., 1980, Introduction and historical remarks on the innervation of the liver, in: Communication of Liver Cells (H. Popper, L. Bianchi, F. Gudat, and W. Reutter, eds), pp. 109–114, MTP Press, Lancaster.Google Scholar
  35. 35.
    McCuskey, R. S., 1980, Intrahepatic distribution of nerves: A review, in: Coummunication of Liver Cells (H. Popper, L. Bianchi, F. Gudat, and W. Reutter, eds), pp. 115–120, MTP Press, Lancaster.Google Scholar
  36. 36.
    Shimazu, T., 1981, Central nervous system regulation of liver and adipose tissue metabolism, Diabetologia 20: 343–356.PubMedCrossRefGoogle Scholar
  37. 37.
    Zierz, S., and Jungermann, K., 1984, Alteration with the dietary state of the activity and zonal distribution of the glucagon-, fluoride-and forskolin-stimulated adenylate cyclase in micro-dissected rat liver tissue, Eur. J. Biochem. 145: 499–504.PubMedCrossRefGoogle Scholar
  38. 38.
    Nauck, M., Wölfle, D., Katz, N., and Jungermann, K., 1981, Modulation of the glucagon-dependent induction of phosphoenolpyruvate carboxykinase and tyrosine aminotransferase by arterial and venous oxygen concentrations in hepatocyte cultures, Eur. J. Biochem. 119: 657–661.PubMedCrossRefGoogle Scholar
  39. 39.
    Katz, N., Nauck, M., and Wilson, P., 1979, Induction of glucokinase by insulin under the permissive action of dexamethasone in primary rat hepatocyte cultures, Biochem. Biophys. Res. Commun. 88: 23–29.PubMedCrossRefGoogle Scholar
  40. 40.
    Probst, I., and Jungermann, K., 1983, The glucagon-insulin antagonism and gluca-gon-dexamethasone synergism in the induction of phosphoenolpyruvate carboxykinase in cultured rat hepatocytes, Hoppe-Seyler’s Z. Physiol. Chem. 364: 1739–1746.PubMedCrossRefGoogle Scholar
  41. 41.
    Probst, I., Schwartz, P., and Jungermann, K., 1982, Induction in primary culture of “gluco-neogenic” and “glycolytic” hepatocytes resembling periportal and perivenous cells, Eur. J. Biochem. 126: 271–278.PubMedCrossRefGoogle Scholar
  42. 42.
    Andersen, B., Nath, A., and Jungermann, K., 1982, Heterogeneous distribution of phosphoen-olpyruvate carboxykinase in rat liver parenchyma, isolated and cultured hepatocytes, Eur. J. Cell Biol. 28: 47–53.PubMedGoogle Scholar
  43. 43.
    Harris, A. J., 1974, Inductive functions of the nervous system, Annu. Rev. Physiol. 36: 251–305.PubMedCrossRefGoogle Scholar
  44. 44.
    Shimazu, T., and Ogasawara, S., 1975, Effects of hypothalamic stimulation on gluconeogenesis and glycolysis in rat liver, Am. J. Physiol. 228: 1787–1793.PubMedGoogle Scholar
  45. 45.
    Wölfle, D., Hartmann, H., and Jungermann, K., 1981, Induction of phosphoenolpyruvate carboxykinase by sympathetic agents in primary cultures of adult rat hepatocytes, Biochem. Biophys. Res. Commun. 98: 1084–1090.PubMedCrossRefGoogle Scholar
  46. 46.
    Bühler, H. V., Da Prada, M., Haefely, W., and Picotty, G. B., 1978, Plasma adrenaline, noradrenaline and dopamine in man and different animal species, J. Physiol. 276: 311–320.PubMedGoogle Scholar
  47. 47.
    Wathey, J. C., Nass, M. M., and Lester, H. A., 1979, Numerical reconstruction of the quantal event at nicotinic synapses, Biophys. J. 27: 145–164.PubMedCrossRefGoogle Scholar
  48. 48.
    Bittner, R., Böhme, H. J., Didt, L., Goltzsch, W., Hofmann, E., Levin, M. J., and Sparmann, G., 1979, Developmental changes in the levels of hepatic enzymes and their relation to metabolic functions, Adv. Enzyme Reg. 17: 37–57.CrossRefGoogle Scholar
  49. 49.
    Walker, P. R., Bonney, R. J., and Potter, V. R., 1974, Diurnal rhythm of hepatic carbohydrate metabolism during development in the rat, Biochem. J. 140: 523–529.PubMedGoogle Scholar
  50. 50.
    Katz, N., Teutsch, H. F., Jungermann, K., and Sasse, D., 1976, Perinatal development of the metabolic zonation of hamster liver parenchyma, FEBS Lett. 69: 23–28.PubMedCrossRefGoogle Scholar
  51. 51.
    Andersen, B., Zierz, S., and Jungermann, K., 1983, Perinatal development of the distributions of phosphoenolpyruvate carboxykinase and succinate dehydrogenase in rat liver parenchyma, Eur. J. Cell Biol. 30: 126–131.PubMedGoogle Scholar
  52. 52.
    Guder, W., and Schmidt, U., 1976, Liver cell heterogeneity: The distribution of pyruvate kinase and phosphoenolpyruvate carboxykinase in the liver lobule of fed and starved rats, Hoppe-Seyler’s Z. Physiol. Chem. 357: 1793–1800.PubMedCrossRefGoogle Scholar
  53. 53.
    Katz, N., Teutsch, H., Sasse, D., and Jungermann, K., 1977, Heterogeneous distribution of glucose-6-phosphatase in microdissected periportal and perivenous rat liver tissue, FEBS Lett. 76: 226–230.PubMedCrossRefGoogle Scholar
  54. 54.
    Zierz, S., Katz, N., and Jungermann, K., 1983, Distribution of pyruvate kinase type L and M2 in microdissected periportal and perivenous rat liver tissue with different dietary states, Hoppe-Seyler’s Z. Physiol. Chem. 364: 1447–1453.PubMedCrossRefGoogle Scholar
  55. 55.
    Katz, N., Teutsch, H., Jungermann, K., and Sasse, D., 1977, Heterogenous reciprocal localization of fructose-1, 6-bisphosphatase and of glucokinase in microdissected periportal and perivenous rat liver tissue, FEBS Lett. 83: 272–276.PubMedCrossRefGoogle Scholar
  56. 56.
    Fischer, W., Ick, M., and Katz, N., 1982, Reciprocal distribution of hexokinase and glucokinase in the periportal and perivenous zone of the rat liver acinus, Hoppe-Seyler’s Z. Physiol. Chem. 363: 375–380.PubMedCrossRefGoogle Scholar
  57. 57.
    Brinkmann, A., Katz, N., Sasse, D., and Jungermann, K., 1978, Increase of the gluconeogenic and decrease of the glycolytic capacity of rat liver with a change of the metabolic zonation after partial hepatectomy, Hoppe-Seyler’s Z. Physiol. Chem. 359: 1561–1571.PubMedCrossRefGoogle Scholar
  58. 58.
    Andersen, B., Zierz, S., and Jungermann, K., 1984, Alteration in zonation of succinate dehydrogenase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in regenerating rat liver, Histochemistry 80: 97–101.PubMedCrossRefGoogle Scholar
  59. 59.
    Katz, N., Brinkmann, A, and Jungermann, K., 1979, Compensatory increase of the gluconeogenic capacity of rat kidney after partial hepatectomy, Hoppe-Seyler’s Z. Physiol. Chem. 360: 51–57.PubMedCrossRefGoogle Scholar
  60. 60.
    Bakewicz, D., and Piro, M., 1981, Changing hormonal levels during the process of rat liver regeneration, J. Cell Biol. 91: 9a.Google Scholar
  61. 61.
    Leffert, H. L., Koch, K. S., Moran, T., and Rubalcava, B., 1979, Hormonal control of rat liver regeneration, Gastroenterology 76: 1470–1482.PubMedGoogle Scholar
  62. 62.
    Nuber, R., Teutsch, H. F., and Sasse, D., 1980, Metabolic zonation in thioacetamide-induced liver cirrhosis, Histochemistry 69: 277–288.PubMedCrossRefGoogle Scholar
  63. 63.
    Wölfle, D., and Jungermann, K., 1985, Long-term effects of physiological oxygen concentrations on glycolysis and gluconeogenesis in hepatoctye cultures, Eur. J. Biochem. 151: 299–303.PubMedCrossRefGoogle Scholar
  64. 64.
    Miethke, H., Wittig, B., Nath, A., Zierz, S., and Jungermann, K., 1985, Metabolic zonation in liver of diabetic rats. Biol. Chem. Hoppe-Seyler 366: 493–501.PubMedCrossRefGoogle Scholar
  65. 65.
    Chatzipanagiotou, S., Nath, A., Vogt, B. and Jungermann, K., 1985, Alteration in the capacities as well as in the zonal and cellular distribution of pyruvate kinase L1 and M2 in regenerating rat liver, Biol. Chem. Hoppe-Seyler 366: 271–280.PubMedCrossRefGoogle Scholar
  66. 66.
    Wittig, B., Zierz, S., Gubernatis, G., Nath, A., and Jungermann, K., 1985, Glucostat capacity and metabolic zonation in rat liver after portocaval anastomosis, Biol. Chem. Hoppe-Seyler 366: 713–722.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Kurt Jungermann
    • 1
  1. 1.Institut für BiochemieUniversität GöttingenGöttingenFederal Republic of Germany

Personalised recommendations