Advertisement

Bile Acid Metabolism

  • Jorge J. Gumucio
  • William F. Balistreri
  • Fred J. Suchy

Abstract

Transport and metabolism of bile acids by the liver have been the subject of several recent reviews.1–3 In this chapter, however, the problem is analyzed in a different context. An attempt is made to integrate the development of these functions in the fetal and newborn liver with the transport and metabolic regulation of bile acids observed in the adult liver. Moreover, these processes are analyzed in the context of the functional heterogeneity of the hepatic parenchyma observed in both the fetal and the adult liver. While significant progress has been made recently in this area, the available data are still scarce. Many more questions can be raised than answers given in dealing with the transport and metabolism of bile acids by the functional units of the fetal liver or by the zones of the adult hepatic acinus. We hope this review will stimulate research in these areas.

Keywords

Bile Acid Cholic Acid Enterohepatic Circulation Bile Acid Synthesis Bile Acid Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Palmer, R. H., 1982, Bile salts and the liver, in: Progress in Liver Diseases, Vol. VII (H. Popper and F. Schaffner, eds.), pp. 221–242, Grime and Stratton, New York.Google Scholar
  2. 2.
    Nair, P., and Kritchevsky, D., eds., 1971, The Bile Acids, Plenum Press, New York.Google Scholar
  3. 3.
    Bjorkheim, I., and Danielson, H., 1976, Biosynthesis and metabolism of bile acids in man, in: Progress in Liver Diseases, Vol. V (H. Popper and F. Schaffner, eds.), pp. 215–231, Grune and Stratton, New York.Google Scholar
  4. 4.
    Rappaport, A. M., Borowy, Z. J., Lougheed, W. M., and Lotto, W. N., 1954, Subdivision of hexagonal liver lobules into a structural and functional unit, Anat. Rec. 1119: 11–27.CrossRefGoogle Scholar
  5. 5.
    Dvorchick, B. H., Stenger, V. G., and Onattropain, S. L., 1974, Fetal hepatic drug metabolism in the nonhuman primate, Macaca arctoides, Drug Metab. Dispos. 2: 539–546.Google Scholar
  6. 6.
    Edelstone, D., Rudolph, A., and Heyman, M., 1978, Liver and ductus venous blood flows in fetal lambs in utero, Circ. Dis. 42: 426–432.Google Scholar
  7. 7.
    Rudolph, A. M., 1983, Hepatic and ductus venous blood flow in fetal liver, Hepatology 3: 254–258.PubMedCrossRefGoogle Scholar
  8. 8.
    Emery, J. L., 1955, Asymmetrical liver disease in infancy, J. Pathol. Bacteriol. 69: 219–224.PubMedCrossRefGoogle Scholar
  9. 9.
    Emery, J. L., 1963, Functional asymmetry of the liver, Ann. N. Y. Acad. Sci. 111: 37–44.PubMedCrossRefGoogle Scholar
  10. 10.
    Gumucio, J. J., Functional units of the developing guinea pig liver (in prep.).Google Scholar
  11. 11.
    Zink, J., 1981, The fetal and neonatal hepatic circulation, in: Hepatic Circulation in Health and Disease (W. W. Lautt, ed.), pp. 227–248, Raven Press, New York.Google Scholar
  12. 12.
    Mihaly, G. W., Morgan, D. J., Smallwood, R., and Haroy, K. J., 1982, The developing liver: The steady-state disposition of propranolol in pregnant sheep, Hepatology 2: 344–349.PubMedCrossRefGoogle Scholar
  13. 13.
    Gumucio, J. J., and Miller, D. L., 1981, Functional implications of liver cell heterogeneity, Gastroenterology 80: 393–403.PubMedGoogle Scholar
  14. 14.
    Jungermann, K., and Katz, N., 1982, Functional hepatocellular heterogeneity, Hepatology 2: 385–395.PubMedCrossRefGoogle Scholar
  15. 15.
    Gumucio, J. J., and Miller, D. L., 1982, Liver cell heterogeneity, in: The Liver: Biology and Pathobiology (I. Arias, H. Popper, D. Schachter, and D. A. Shafritz, eds.), pp. 647–673, Raven Press, New York.Google Scholar
  16. 16.
    Carey, M. C., 1982, The enterohepatic circulation, in: The Liver: Biology and Pathobiology (I. Arias, H. Popper, D. Schachter, and D. A. Shafritz, eds.), pp. 429–465, Raven Press, New York.Google Scholar
  17. 17.
    Gumucio, J. J., and Miller, D. L., 1982, Zonal hepatic function: Solute-hepatocyte interactions within the liver acinus, in: Progress in Liver Diseases, Vol. VII (H. Popper and F. Schaffner, eds.), pp. 17–30, Grune and Stratton, New York.Google Scholar
  18. 18.
    Glasinovic, J. C., Dumont, M., Duval, M., and Erlinger, S., 1975, Hepatocellular uptake of taurocholate in the dog, J. Clin. Invest. 55: 419–426.CrossRefGoogle Scholar
  19. 19.
    Scharschmidt, B. F., Waggoner, J. G., and Berk, P. D., 1976, Hepatic organic anion uptake in the rat, J. Clin. Invest. 56: 1280–1292.CrossRefGoogle Scholar
  20. 20.
    Reicher, J., and Paumgartner, G., 1975, Kinetics of taurocholate uptake by the perfused rat liver, Gastroenterology 68: 132–136.Google Scholar
  21. 21.
    Schwarz, L. R., Burr, R., Schwenk, M., Pfaff, E., and Greim, H., 1975, Uptake of taurocholic acid into isolated rat liver cells, Eur. J. Biochem. 55: 617–623.PubMedCrossRefGoogle Scholar
  22. 22.
    Van Dyke, R. W., Stephens, J. E., and Scharschmidt, B. F., 1982, Bile acid transport in cultured rat hepatocytes, Am. J. Physiol. 243: G484–G492.PubMedGoogle Scholar
  23. 23.
    Accatino, L., and Simon, F. R., 1976, Identification and characterization of a bile acid receptor in isolated liver surface membranes, J. Clin. Invest. 57: 496–508.PubMedCrossRefGoogle Scholar
  24. 24.
    Inoue, M., Kinne, R., Tran, T., Biempica, L., and Arias, I. M., 1983, Rat liver canalicular membrane vesicles: Isolation and topological characterization, J. Biol. Chem. 258: 5183–5188.PubMedGoogle Scholar
  25. 25.
    Erlinger, S., 1981, Hepatocyte bile secretion: Current views and controversies, Hepatology 1: 352–359.PubMedCrossRefGoogle Scholar
  26. 26.
    Blitzer, B. L., and Boyer, J. L., 1978, Cytochemical localization of Na+, K+-ATPase in the rat hepatocyte, J. Clin Invest. 62: 1104–1108.PubMedCrossRefGoogle Scholar
  27. 27.
    Latham, P. S., and Kashgariam, M., 1979, The ultrastructural localization of transport ATPase in rat liver at nonbile canalicular plasma membranes, Gastroenterology 76: 988–996.PubMedGoogle Scholar
  28. 28.
    Scharschmidt, B. F., and Van Dyke, R. W., 1983, Mechanisms of hepatic electrolyte transport, Gastroenterology 85: 1199–1216.PubMedGoogle Scholar
  29. 29.
    Reicher, J., Preisig, R., and Paumgartner, G., 1977, Influence of chemical structure on hepatocellular uptake of bile acids, in: Bile and Metabolism in Health and Disease (G. Paumgartner and A. Stiehl, eds.), pp. 113–123, MTP Press, Lancaster.Google Scholar
  30. 30.
    Jones, A. L., Hrodek, G. T., Renston, R. H., Wong, K. Y., Karlagaris, G., and Paumgartner, G., 1980, Autoradiographic evidence for hepatic lobular concentration gradient of bile acid derivative, Am. J. Physiol. 238: G233–G237.PubMedGoogle Scholar
  31. 31.
    Groothuis, G. M. M., Hardonk, M. J., Karleman, K. P. T., Miervenhuis, P., and Meijer, D. K. F., 1981, Autoradiographic and kinetic demonstration of acinar heterogeneity of tau-rocholate transport, Am. J. Physiol. 243: G455–G462.Google Scholar
  32. 32.
    Gumucio, J. J., and Katz, M. E., 1978, The acinar organization for bile salt transport, in: The Liver: Quantitative Aspects of Structure and Function (R. Preisig and J. Bircher, eds.), pp. 179–184, Editio Cantor Aulendorf, Berne.Google Scholar
  33. 33.
    Layden, T. J., and Boyer, J. L., 1978, Influence of bile acids on bile canalicular membrane morphology and the lobular gradient in canalicular size, Lab. Invest. 39: 110–119.PubMedGoogle Scholar
  34. 34.
    Smallwood, R. A., Iser, J. H., and Hofmann, N. E., 1974, in: Advances in Bile Acid Research (S. Matern, J. Hackenschmidt, P. Back, and W. Gerok, eds.), pp. 229–232, Schattauer-Verlag GmbH, Stuttgart.Google Scholar
  35. 35.
    Aldini, R., Roda, A., Labati, A. M. M., Cappelleri, G., Roda, E., and Barbara, L., 1982, Hepatic bile acid uptake: Effect of conjugation, hydroxyl and keto groups, and albumin binding, J. Lipid Res. 23: 1167–1173.PubMedGoogle Scholar
  36. 36.
    Rudman, D., and Kendall, F. E., 1957, Bile acid content of human serum. II. The binding of cholanic acids by human plasma protein, J. Clin. Invest. 36: 538–542.PubMedCrossRefGoogle Scholar
  37. 37.
    Kramer, W., Buscher, H. P., Gerok, W., and Kurz, G., 1979, Bile salt binding to serum components: Taurocholate incorporation into high-density lipoproteins revealed by photoaffinity labelling, Eur. J. Biochem. 102: 1–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Gumucio, D. L., Gumucio, J. J., Wilson, J. A. P., Cutter, C., Krauss, M., Caldwell, R., and Chen, E., Albumin influences sulfobromophthalein transport by hepatocytes of each acinar zone, Am. J. Physiol. 246: G86-G95.Google Scholar
  39. 39.
    Baker, K., and Bradley, S. E., 1966, Binding of sulfobromophthalein (BSP) sodium by plasma albumin: Its role in hepatic BSP extraction, J. Clin. Invest. 45: 281–287.PubMedCrossRefGoogle Scholar
  40. 40.
    Forker, E. L., and Luxon, B. A., 1981, Albumin helps mediate removal of taurocholate by rat liver, J. Clin. Invest. 67: 1517–1522.PubMedCrossRefGoogle Scholar
  41. 41.
    Forker, E. L., and Luxon, B. A., 1978, Hepatic transport kinetics and plasma disappearance curves: Distributed modeling versus conventional approach, Am. J. Physiol. 235: 648–660.Google Scholar
  42. 42.
    Weisinger, R. A., Gollan, J., and Ockner, R., 1981, Receptor for albumin in the liver cell surface may mediate uptake of fatty acids and other albumin-bound substances, Science 211: 1048–1050.CrossRefGoogle Scholar
  43. 43.
    Weisinger, R. A., Gollan, J., and Ockner, R., 1982, The role of albumin in hepatic uptake processes, in: Progress in Liver Diseases, Vol. VII (H. Popper and F. Schaffner, eds.), pp. 71–85, Grune and Stratton, New York.Google Scholar
  44. 44.
    Ockner, R., Weisinger, R. A., and Gollan, J. L., 1983, Hepatic uptake of albumin-bound substances: Albumin receptor concept, Am. J. Physiol. 245: G13–G18.PubMedGoogle Scholar
  45. 45.
    Middlehoff, G., Mordasini, R., Shiehl, A., and Greten, H., 1979, A bile-rich high density lipoprotein (HDL) in acute hepatitis, Scand. J. Gastroenterol. 14: 267–272.CrossRefGoogle Scholar
  46. 46.
    Delahunty, T., and Feldkamp, C., 1980, Studies of endogenous N-cholylglycine distribution among serum proteins using radioimmunoassay, Steroids 36: 439–449.PubMedCrossRefGoogle Scholar
  47. 47.
    Danielsson, H., 1973, Mechanism of bile acid synthesis, in: The Bile Acids, Vol. 3 (P. P. Nair and D. Kritchevsky, eds.), pp. 1–32, Plenum Press, New York.CrossRefGoogle Scholar
  48. 48.
    Danielsson, H., and Sjovall, J., 1975, Bile acid metabolism, Annu. Rev. Biochem. 44: 233–253.PubMedCrossRefGoogle Scholar
  49. 49.
    Swell, L., Gustaffson, J., Schwartz, C. C., Halloran, L. G., Danielsson, H., and Vlahcevic, Z. R., 1980, An in vivo evaluation of the quantitative significance of several potential pathways to cholic and chenodeoxycholic acids from cholesterol in man, J. Lipid Res. 21: 455–466.PubMedGoogle Scholar
  50. 50.
    Vlahcevic, Z. R., Schwartz, C. C., Gustaffson, J., Halloran, L. G., Danielsson, H., and Swell, L., 1980, Biosynthesis of bile acids in man: Multiple pathways to cholic and cheno-deoxycholic acid, J. Biol. Chem. 255: 2925–2933.PubMedGoogle Scholar
  51. 51.
    Ayaki, Y., Tsuma-Date, T., Endo, S., and Ogura, M., 1981, Role of endogenous and exogenous cholesterol in liver as the precursor for bile acids in rats, Steroids 38: 495–509.PubMedCrossRefGoogle Scholar
  52. 52.
    Kempen, H. J., Vos-van Holstein, M., and de Lange, J., 1983, Bile acids and lipids in isolated rat hepatocytes. II. Source of cholesterol used for bile acid formation, estimated by incorporation of tritium from tritiated water, and by the effect of ML-236 B, J. Lipid Res. 24: 316–323.PubMedGoogle Scholar
  53. 53.
    Miller, L. K., Tiell, L., Paul, I., Spaet, T. H., and Rosenfeld, R. S., 1982, Side-chain oxidation of lipoprotin-bound 24, 25-3H cholesterol in the rat: Comparison of HDL and LDL and implications for bile acid synthesis, J. Lipid Res. 23: 335–344.PubMedGoogle Scholar
  54. 54.
    Dowling, R. H., Mack, E., Small, D. M., and Picott, J., 1970, Effects of controlled interruption of the enterohepatic circulation of bile salts by biliary diversion and by ileal resection on bile salt secretion, synthesis and pool size in the rhesus monkey, J. Clin. Invest. 49: 232–242.PubMedCrossRefGoogle Scholar
  55. 55.
    Shefer, S., Hauser, S., Berkersky, I., and Mosbach, E. H., 1969, Feedback regulation of bile acid biosynthesis in the rat, J. Lipid Res. 10: 646–655.PubMedGoogle Scholar
  56. 56.
    Shefer, S., Hauser, S., Berkersky, I., and Mosbach, E. H., 1970, Biochemical site of regulation of bile acid biosynthesis in the rat, J. Lipid Res. 11: 404–411.PubMedGoogle Scholar
  57. 57.
    Bjorkhem, I., Eriksson, M., and Eniarsson, K., 1983, Evidence for a lack of regulatory importance of the 12α-hydroxylase in formation of bile acids in man: An in vivo study, J. Lipid Res. 24: 1451–1456.PubMedGoogle Scholar
  58. 58.
    Bjorkhem, I., Gustafsson, J., Johansson, G., and Persson, B., 1975, Biosynthesis of bile acids in man, J. Clin. Invest. 55: 478.PubMedCrossRefGoogle Scholar
  59. 59.
    Cronholm, T., and Johansson, G., 1970, Oxidation of 5β-cholestane-3α, 7α, 12α-triol by rat liver microsomes, Eur. J. Biochem. 16: 373.PubMedCrossRefGoogle Scholar
  60. 60.
    Shefer, S., Chen, F. W., Dayal, B., Hauser, S., Tint, G. S., Salen, G., and Mosbach, E. H., 1975, A 25-hydroxylation pathway of cholic acid biosynthesis in man and rat, J. Clin. Invest. 57: 897–903.CrossRefGoogle Scholar
  61. 61.
    Bostrom, H., and Wikvall, K., 1982, Hydroylations in biosynthesis of bile acids: Isolation of subfractions with different substrate specificity from cytochrome P-450LM4, J. Biol. Chem. 257: 11, 755–11, 759.Google Scholar
  62. 62.
    Kase, F., Bjorkhem, I., and Pedersen, J. I., 1983, Formation of cholic acid from 3α, 7α, 12α-trihydroxy-5β-cholestanoic acid by rat liver peroxisomes, J. Lipid Res. 24: 1560–1567.PubMedGoogle Scholar
  63. 63.
    Pederson, J. I., and Gustafsson, J., 1980, Conversion of 3α, 7α, 12α-trihydroxy-5β-choles-tanoic acid into cholic acid by rat liver peroxisomes, FEBS Lett. 121: 345–348.CrossRefGoogle Scholar
  64. 64.
    Sanghvi, A., Grassi, E., Warty, V., Diven, W., Wight, C., and Lester, R., 1981, Reversible activation-inactivation of cholesterol 7α-hydroxylase possibly due to phosphoryla-tion-deposphorylation, Biochem. Biophys. Res. Commun. 103: 886–892.PubMedCrossRefGoogle Scholar
  65. 65.
    Pries, J. M., Gustafson, A., Wiegand, D., and Duane, W. C., 1983, Taurocholate is more potent than cholate in suppression of bile salt synthesis in the rat, J. Lipid Res. 24: 141–146.PubMedGoogle Scholar
  66. 66.
    Duane, W. C., 1978, Simulation of the defect of bile acid metabolism associated with cholesterol cholelithiasis by sorbitol ingestion in man, J. Lab. Clin. Med. 91: 969–978.PubMedGoogle Scholar
  67. 67.
    Mok, H. Y. I., von Bergmann, K., and Grundy, S. M., 1977, Regulation of pool size of bile acids in man, Gastroenterology 73: 684–690.PubMedGoogle Scholar
  68. 68.
    Mok, H. Y. I., von Bergman, L., and Grundy, S. M., 1980, Kinetics of the enterohepatic circulation during fasting: Biliary lipid secretion and gall bladder storage, Gastroenterology 78: 1023–1033.PubMedGoogle Scholar
  69. 69.
    Duane, W. C., Gilberstadt, M. L., and Wiegand, D. M., 1979, Diurnal rhythms of bile acid production in the rat, Am. J. Physiol. 237: R175–R179.Google Scholar
  70. 70.
    Duane, W. C., Ginsberg, R. L., and Bennion, L. J., 1976, Effects of fasting on bile acid metabolism and biliary lipid composition in man, J. Lipid Res. 17: 211–219.PubMedGoogle Scholar
  71. 71.
    Duane, W. C., Levitt, D. G., Mueller, S. M., and Behrens, J. C., 1983, Regulation of bile acid synthesis in man: Presence of a diurnal rhythm, J. Clin. Invest. 72: 1930–1936.PubMedCrossRefGoogle Scholar
  72. 72.
    Scott, R. B., Strasberg, S. M., El-Sharkawy, T. Y., and Diamant, N. E., 1983, Regulation of the fasting enterohepatic circulation of bile acids by the migrating myoelectric complex in dogs, J. Clin. Invest. 71: 644–654.PubMedCrossRefGoogle Scholar
  73. 73.
    Okishio, T., and Nair, P.P., 1966, Studies on bile acids: Some observations on the intracellular localization of major bile acids in rat liver, Biochemistry 5: 3662–3668.PubMedCrossRefGoogle Scholar
  74. 74.
    Strange, R. C., Beckett, G. J., and Percy-Robb, I. W., 1979, Nuclear and cytosolic distribution of conjugated cholic acid and radiolabelled glycocholic acid in rat liver, Biochem. J. 178: 71–78.PubMedGoogle Scholar
  75. 75.
    Hayes, J. D., Strange, R. C., and Percy-Robb, I. W., 1979, Identification of two lithocholic acid-binding proteins: Separation of ligandin from glutathione-5-transferase B, Biochem J. 181: 699–708.PubMedGoogle Scholar
  76. 76.
    Strange, R. C., Chapman, B. J., Johnston, J. D., Nimmo, I. A., and Percy-Robb, I. W., 1979, Partitioning of bile acids into subcellular organelles and the in vivo distribution of bile acids in rat liver, Biochim. Biophys. Acta 573: 535–545.PubMedGoogle Scholar
  77. 77.
    Strange, R. C., Cramb, R., Hayes, J. D., and Percy-Robb, I. W., 1977, Partial purification of two lithocholic acid-binding proteins from rat liver 100, 000 g supernatants, Biochem. J. 165: 425–429.PubMedGoogle Scholar
  78. 78.
    Strange, R. C., Nimmo, I. A., and Percy-Robb, I. W., 1979, Studies in the rat on the hepatic subcellular distribution and biliary excretion of lithocholic acid, Biochim. Biophys. Acta 588: 70–80.PubMedCrossRefGoogle Scholar
  79. 79.
    Strange, R. C., Nimmo, I. A., and Percy-Robb, I. W., 1977, Binding of bile acids by 100, 000 g supernatants from rat liver, Biochem. J. 162: 659–664.PubMedGoogle Scholar
  80. 80.
    Simion, F. A., Fleischer, B., and Fleischer, S., 1983, Subcellular distribution of cholic acids: Coenzyme A ligase and deoxycholic acid activities in rat liver, Biochemistry 22: 5029–5034.PubMedCrossRefGoogle Scholar
  81. 81.
    Vessey, D. A., Whitney, J., and Gollan, J. L., 1983, The role of conjugation reactions in enhancing biliary secretion of bile acids, Biochem. J. 214: 923–927.PubMedGoogle Scholar
  82. 82.
    Zouboulis-Vafiadis, I., Dumont, M., and Erlinger, S., 1983, Conjugation is rate limiting in hepatic transport of ursodeoxycholate in the rat, Am. J. Physiol. 243: G208–G213.Google Scholar
  83. 83.
    Gregory, D. H., Vlahcevic, Z. R., Schatzki, P., and Swell, L., 1975, Mechanism of secretion of biliary lipids. I. Role of bile canalicular and microsomal membranes in the synthesis and transport of biliary lecithin and cholesterol, J. Clin. Invest. 55: 105–114.PubMedCrossRefGoogle Scholar
  84. 84.
    Jones, A. L., Schmucker, D. L., Mooney, J. S., Ockner, R. K., and Adler, R. D., 1979, Alterations in hepatic pericanalicular cytoplasm during enhanced bile secretory activity, Lab. Invest. 40: 512–517.PubMedGoogle Scholar
  85. 85.
    Goldsmith, M. A., and Huling, S., 1982, Effect of estradiol on hepatocyte handling of horseradish peroxidase and bile salts, Gastroenterology 82: 1255A.Google Scholar
  86. 86.
    Suchy, F. J., Balistreri, W. F., Hung, J., Miller, P., and Garfield, S. A., 1983, Intracellular bile acid transport in rat liver as visualized by electron microscope autoradiography using a bile acid analogue, Am. J. Physiol. 245: G681–G689.PubMedGoogle Scholar
  87. 87.
    Chen, E., Gumucio, J. J., and Ho, H., 1984, Hepatocytes of zones 1 and 3 of the liver acinus conjugate BSP with glutathione, Hepatology 4: 467–476.PubMedCrossRefGoogle Scholar
  88. 88.
    Pang, K. S., and Gillette, J. R., 1980, Kinetics of metabolite formation and elimination in the perfused rat liver preparation: Differences between the elimination of preformed acetaminophen and acetaminophen formed from phenacetin, J. Pharmacol. Exp. Ther. 207: 178–194.Google Scholar
  89. 89.
    Pang, L. S., and Terrell, J. A., 1981, Retrograde perfusion to probe the heterogeneous distribution of hepatic drug metabolizing enzymes in rats, J. Pharmacol. Exp. Ther. 216: 339–346.PubMedGoogle Scholar
  90. 90.
    Suchy, F. J., and Balistreri, W. F., 1982, Uptake of taurocholate in hepatocytes isolated from developing rats, Pediatr. Res. 16: 282–285.PubMedCrossRefGoogle Scholar
  91. 91.
    Klinger, W., 1982, Biotransformation of drugs and other xenobiotics during postnatal development, Pharmacol. Ther. 16: 377–429.PubMedCrossRefGoogle Scholar
  92. 92.
    Lester, R., 1980, Physiologic cholestasis, Gastroenterology 78: 864–870.PubMedGoogle Scholar
  93. 93.
    Suchy, F. J., Balistreri, W. F., Heubi, J. E., Searchy, J. E., and Levin, R. S., 1981, Physiologic cholestasis: Elevation of the primary serum bile acid concentrations in normal infants, Gastroenterology 80: 1037–1041.PubMedGoogle Scholar
  94. 94.
    Klaassen, C. D., 1978, Independence of bile acid ouabain hepatic uptake: Studies in the new born rat, Proc. Soc. Exp. Biol. Med. 157: 66–69.PubMedGoogle Scholar
  95. 95.
    Klaassen, C. D., 1975, Hepatic uptake of cardiac glycosides in new born rats, rabbits and dogs, Biochem. Pharmacol. 24: 923–925.PubMedCrossRefGoogle Scholar
  96. 96.
    Gartner, L. M., Lee, K. S., Vaismans, L., Lane, D., and Zarafu, I., 1977, Development of bilirubin transport and metabolism in the newborn rhesus monkey, J. Pediatr. 90: 513–531.PubMedCrossRefGoogle Scholar
  97. 97.
    Belknap, W. M., Balistreri, W. F., Suchy, F. J., and Miller, P., 1981, Physiologic cholestasis. II. Serum bile acids reflect the development of the enterohepatic circulation in rats, Hepatology 1: 613–616.PubMedCrossRefGoogle Scholar
  98. 98.
    Balistreri, W. F., Heubi, J. E., and Suchy, F. J., 1983, Immaturity of the enterohepatic circulation in early life: Factors predisposing to “physiologic” maldigestion and cholestasis, J. Pediatr. Gastroenterol. Nutr. 2: 346–354.PubMedGoogle Scholar
  99. 99.
    Suchy, F. J., Heubi, J. E., Balistreri, W. F., and Belknap, W. M., 1981, The enterohepatic circulation of bile acids in suckling and weaning rats, Gastroenterology 80: 1351 A.Google Scholar
  100. 100.
    Suchy, F. J., Balistreri, W. F., Shockey, J. R., and Garfleld, S. A., 1983, Absence of a hepatic lobular gradient on bile acid uptake in the suckling rat, Hepatology 3: 847A.Google Scholar
  101. 101.
    Marshall, A. W., Milhaly, G. W., Smallwood, R. A., Morgan, D. J., and Hardy, K. J., 1981, Fetal hepatic function: The disposition of propranolol in the pregnant sheep, Res. Commun. Chem. Pathol. Pharmacol. 32: 3–25.PubMedGoogle Scholar
  102. 102.
    Tatsuji, G. A., and Klaassen, C. D., 1982, Age-related pharmacokinetics of ouabain in rats, Proc. Soc. Exp. Biol. Med. 170: 59–62.Google Scholar
  103. 103.
    Sussman, S., Carbone, J. V., Grodsky, G., Hjelte, V., and Miller, P., 1962, Sulfobromo-phthalein sodium metabolism in newborn infants, Pediatrics 29: 899–906.PubMedGoogle Scholar
  104. 104.
    Vest, M. F., 1962, Conjugation of sulfobromophthalein in newborn infants and children, J. Clin. Invest. 41: 1013–1020.PubMedCrossRefGoogle Scholar
  105. 105.
    Yudkin, S., and Bells, S. S., 1949, Liver function in newborn infants with special reference to excretion of bromsulfophthalein, Arch. Dis. Child. 24: 12–14.PubMedCrossRefGoogle Scholar
  106. 106.
    Oppe, T. E., and Gibbs, I. E., 1959, Sulfobromophthalein excretion in premature infants, Arch. Dis. Child. 34: 125–130.PubMedCrossRefGoogle Scholar
  107. 107.
    Heimann, G., Roth, B., and Gladtke, E., 1977, Indocyanin-Grün-Kinetik beim Neugeborenen mit transitorischen Hyperbilirubinämie, Klin. Wochenschr. 55: 451–456.PubMedCrossRefGoogle Scholar
  108. 108.
    Roth, B., Statz, A., Heinisch, H. M., and Gladtke, E., 1981, Elimination of indocyanine green by the liver of infants with hypertrophic pyloric stenosis and the icteropyloric syndrome, J. Pediatr. 99: 240–243.PubMedCrossRefGoogle Scholar
  109. 109.
    Barbara, L., Lazzavi, R., Roda, A., Adlini, R., Festi, D., Sama, C., Morselli, A. M., Collina, A., Bazzoli, F., Mazzella, G., and Roda, E., 1980, Serum bile acids in newborns and children, Pediatr. Res. 14: 1222–1225.PubMedCrossRefGoogle Scholar
  110. 110.
    Itoh, S., Onishi, S., Isobe, K., Manabe, M., and Inukai, K., 1982, Foetal maternal relationships of bile acid pattern estimated by high-pressure liquid chromatography, Biochem. J. 204: 1411–1415.Google Scholar
  111. 111.
    Lambiotte, M., Vorbrodt, A., and Benedetti, E. L., 1973, Expression of differentiation of rat foetal hepatocytes in cellular culture under the action of glucocorticoids: Appearance of bile canaliculi, Cell. Differ. 2: 43–53.PubMedCrossRefGoogle Scholar
  112. 112.
    Little, J. M., Richey, J. E., Van Thiel, D. H., and Lester, R., 1979, Taurocholate pool size and distribution in the fetal rat, J. Clin. Invest. 63: 1042–1049.PubMedCrossRefGoogle Scholar
  113. 113.
    Subbiah, M. T. R., Marai, L., Dinh, D. M., and Penner, J. W., 1977, Sterol and bile acid metabolism during development. 1. Studies on the gallbladder and intestinal bile acids of newborn and fetal rabbit, Steroids 29: 83–92.PubMedCrossRefGoogle Scholar
  114. 114.
    Li, J. R., Dinh, D. M., Ellefsson, R. D., and Subbiah, M. T. R., 1979, Sterol and bile acid metabolism during development. 3. Occurrence of neonatal hypercholesterolemia in guinea pig and its possible relation to bile acid pool, Metabolism 28: 151–156.PubMedCrossRefGoogle Scholar
  115. 115.
    Li, J. R., Subbiah, M. T. R., and Kottke, B. A., 1979, Hepatic 3-hydroxyl-3-methylglutaryl coenzyme A reductase activity and cholesterol 7α-hydroxylase activity in neonatal guinea pig, Steroids 34: 47–55.PubMedCrossRefGoogle Scholar
  116. 116.
    Naseem, S. M., Kahn, M. A., Heald, F. P., and Nair, P. P., 1980, The influence of cholesterol and fat in maternal diet of rats on the development of hepatic cholesterol metabolism in the offspring, Atherosclerosis 36: 1–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Subbiah, M. T. R., and Hassan, A. S., 1982, Development of bile acid biogenesis and its significance in cholesterol homeostasis, Adv. Lipid Res. 19: 137–161.PubMedGoogle Scholar
  118. 118.
    Sugiyama, Y., Yamada, T., and Kaplowitz, N., 1982, Newly identified organic anion-binding proteins in rat liver cytosol, Biochim. Biophys. Acta 709: 342–352.PubMedCrossRefGoogle Scholar
  119. 119.
    Balistreri, W. F., Zimmer, L., Suchy, F. J., and Bove, K. E., Bile salt sulfotransferase: Alterations during maturation and non-inducibility during substrate ingestion, J. Lipid Res. 25: 228-235.Google Scholar
  120. 120.
    Blovin, A., Bolender, R. P., and Weibel, E. R., Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma, J. Cell Biol. 72: 441-455.Google Scholar
  121. 121.
    Greengard, O., Federman, M., and Knox, W. E., 1972, Cytomorphometry of developing rat liver and its application to enzyme differentiation, J. Cell Biol. 52: 261–272.PubMedCrossRefGoogle Scholar
  122. 122.
    Rohr, H. P., Wirz, A., Henning, L. C., Riede, U. N., and Biandi, L., 1971, Morphometric analysis of the rat liver cell in the perinatal period, Lab. Invest. 24: 128–139.PubMedGoogle Scholar
  123. 123.
    Daimon, T., David, H., Zglinicki, T. V., and Marx, E., 1982, Correlated ultrastructural and morphometric studies on the liver during perinatal development of rats, Exp. Pathol. 21: 237–250.PubMedCrossRefGoogle Scholar
  124. 124.
    Miller, D. L., Zanolli, C. S., and Gumucio, J. J., 1979, Quantitative morphology of the sinusoids of the hepatic acinus, Gastroenterology 76: 965–969.PubMedGoogle Scholar
  125. 125.
    Gumucio, J. J., 1983, Functional and anatomical heterogeneity in the liver acinus: Impact on transport, Am. J. Physiol. 244: G578–G582.PubMedGoogle Scholar
  126. 126.
    Sunaryo, F. P., Watkins, J. B., and Ling, S., 1982, Neonatal hepatic function: Changes in vascular volume of distribution influence bile acid uptake, Gastroenterology 82: 1247A.Google Scholar
  127. 127.
    Gumucio, J. J., Balabaud, C., Miller, D. L., Demason, L. J., Appleman, H. D., Stoecker, T. J., and Franzblau, D. R., 1978, Bile secretion and liver cell heterogeneity in the rat, J. Lab. Clin. Med. 91: 350–362.PubMedGoogle Scholar
  128. 128.
    Groothuis, G. M. M., Keulemans, K. P. T., Hardonk, M. J., and Meijer, D. K. F., 1983, Acinar heterogeneity in hepatic transport of dibromosulfophthalein and ouabain studied by autoradiography, normal and retrograde perfusions and computer simulation, Biochem. Pharmacol. 32: 3069–3078.PubMedCrossRefGoogle Scholar
  129. 129.
    Suchy, F. J., Bueler, R. L., and Blitzer, B. L., 1983, Impaired taurocholate uptake by liver plasma membrane vesicles isolated from suckling rats, Gastroenterology 84: 1399A.Google Scholar
  130. 130.
    Blitzer, B. L., and Lyons, L., 1983, Direct demonstration of enhancement of taurocholate uptake by albumin in basolateral liver plasma membrane vesicles, Hepatology 3: 850A.Google Scholar
  131. 131.
    Blitzer, B. L., Ratoosh, S. L., and Donovan, C. B., 1983, Amino acid inhibition of bile acid uptake by isolated rat hepatocytes: Relationship to dissipation of the transmembrane Na+ gradient, Am. J. Physiol. 245: G399–G403.PubMedGoogle Scholar
  132. 132.
    De Wolf-Peeters, C., DeVos, R., and Desmet, V., 1971, Histochemical evidence of a cho-lestatic period in neonatal rats, Pediatr. Res. 5: 704–709.CrossRefGoogle Scholar
  133. 133.
    DeWolf-Peeters, C., De Vos, R., and Desmet, V., 1977, Electron microscopy and histochem-istry of canalicular differentiation in fetal and neonatal rat liver, Tissue Cell 4: 379–388.CrossRefGoogle Scholar
  134. 134.
    Miyairi, M., and Phillips, M. J., 1982, Motility behavior of isolated fetal rat hepatocytes in culture, Hepatology 2: 706A.Google Scholar
  135. 135.
    Blitzer, B. L., and Boyer, J. L., 1982, Cellular mechanisms of bile formation, Gastroenterology 82: 346–357.PubMedGoogle Scholar
  136. 136.
    Hardison, W. G. M., Hatoff, D. E., Miyai, K., and Weiner, R. G., 1981, Nature of bile acid maximum secretory rate in the rat, Am. J. Physiol. 241: G337–G343.PubMedGoogle Scholar
  137. 137.
    Hwang, S. W., and Dixon, R. L., 1973, Perinatal development of indocyanine green biliary excretion in guinea pigs, Am. J. Physiol. 225: 1454–1459.PubMedGoogle Scholar
  138. 138.
    Klaassen, C. D., 1975, Hepatic excretory function in the neborn rat, J. Pharmacol. Exp. Ther. 184: 721–728.Google Scholar
  139. 139.
    Varga, F., and Fischer, E., Age dependent changes in blood supply of the liver and in the biliary excretion of eosine in rats, in: Liver and Aging (K. Kitami, ed.), pp. 327–340, Elsevier, Amsterdam.Google Scholar
  140. 140.
    Fischer, E., Barth, A., Varga, F., and Klinger, W., 1979, Age-dependence of transport in control and phenobarbital pretreated rats, Life Sci. 24: 557–562.PubMedCrossRefGoogle Scholar
  141. 141.
    Meijer, P. J., and Boyer, J. L., 1983, The electrical membrane potential in a driving force for taurocholate (TC) excretion into bile canaliculi, Hepatology 3: 860 (A–250).Google Scholar
  142. 142.
    Salen, G., and Shefer, S., 1983, Bile acid synthesis, Annu. Rev. Physiol. 45: 679–685.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Jorge J. Gumucio
    • 1
  • William F. Balistreri
    • 2
  • Fred J. Suchy
    • 2
  1. 1.Veterans Administration HospitalUniversity of MichiganAnn ArborUSA
  2. 2.Children’s HospitalUniversity of CincinnatiCincinnatiUSA

Personalised recommendations