Advertisement

Biotransformation and Zonal Toxicity

  • Ronald G. Thurman
  • Frederick C. Kauffman
  • Jeffrey Baron

Abstract

Hepatotoxins are ubiquitous in nature. Chemical injury to the liver is dependent on the nature of the hepatotoxic agent and the circumstances of exposure (for a comprehensive review, see Zimmerman1). Products of plant, fungal, and bacterial metabolism, minerals,2–4 chemicals and pharmaceuticals, industrial byproducts, and waste materials can damage the liver.5 The types of hepatic injury that result from exposure to hepatotoxins are quite diverse. Some agents cause necrosis, fat accumulation, cirrhosis, or carcinoma,2 while others interfere with bile secretion, cause jaundice, and produce little or no injury to hepatocytes.2,5

Keywords

Liver Lobule Epoxide Hydrolase Perfuse Liver Allyl Alcohol Pericentral Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zimmerman, H. J., 1978, Hepatotoxicity, Appleton-Century-Crofts, New York.Google Scholar
  2. 2.
    Rouiller, C., 1964, Experimental toxic injury of the liver, in: The Liver, Vol. II (C. Rouiller, ed.), pp. 335–476. Academic Press, New York.Google Scholar
  3. 3.
    Schoental, R., 1963, Liver disease and natural hepatotoxins, Bull. W.H.O. 29: 823–828.PubMedGoogle Scholar
  4. 4.
    Kraybill, H. R., 1974, The toxicology and epidemiology of natural hepatotoxin exposure, Isr. J. Med. Sci. 10: 416–430.Google Scholar
  5. 5.
    Klatskin, G., 1975, Toxic and drug-induced hepatitis, in: Diseases of the Liver (L. Schiff, ed.), pp. 604–710, J. B. Lippincott, Philadelphia.Google Scholar
  6. 6.
    Schmid, R., 1960, Cutaneous porphyria in Turkey, N. Engl. J. Med. 263: 397–400.PubMedCrossRefGoogle Scholar
  7. 7.
    Von Oettingen, W. F., 1964, The Halogenated Hydrocarbons of Industrial and Toxicological Importance, Elsevier, Amsterdam.Google Scholar
  8. 8.
    Sakshqug, J., Sognen, E., Hansen, M. A., and Kippang, N., 1965, Its hepatotoxic effect in sheep and its occurrence in toxic batches of herring meal, Nature (London) 206: 1261–1264.CrossRefGoogle Scholar
  9. 9.
    Wolff, I. A., and Wasserman, A. E., 1972, Nitrates, nitrites and nitrosamines, Science 177: 15–16.PubMedCrossRefGoogle Scholar
  10. 10.
    Mitchell, J. R., and Jollow, D. J., 1975, Metabolic activation of drugs to toxic substances, Gastroenterology 68: 392–402.PubMedGoogle Scholar
  11. 11.
    Recknagel, R. O., and Glinde, E. A., 1973, Carbon tetrachloride hepatoxicity: An example of lethal cleavage, CRC Crit. Rev. Toxicolol. 2: 263–300.CrossRefGoogle Scholar
  12. 12.
    Mitchell, J. R., Jollow, D. J., Gillette, J. R., and Brodie, B. B., 1973, Drug metabolism as a cause of drug toxicity, in Drug Metab. Dispos. 1: 418–438.PubMedGoogle Scholar
  13. 13.
    Miller, J. A., 1970, Carcinogenesis by chemicals, Cancer Res. 30: 559–570.PubMedGoogle Scholar
  14. 14.
    Magee, P. N., 1966, Toxic liver necrosis, Lab Invest. 15: 111–120.PubMedGoogle Scholar
  15. 15.
    Rees, K. R., and Tarlow, M. J., 1967, The hepatotoxic action of allyl formate, Biochem. J. 104: 757–762.PubMedGoogle Scholar
  16. 16.
    Mitchell, J. R., Thorgeirrson, U. P., and Black, M., 1975, Increased incidence of isoniazid hepatitis in rapid acetylators: Possible relation to hydrazine metabolites, Clin. Pharmacol. Ther. 18: 70–75.PubMedGoogle Scholar
  17. 17.
    Edmonson, H. A., and Schiff, L., 1975, Needle biopsy of the liver, in: Diseases of the Liver (L. Schiff, ed.), pp. 247–271, J. B. Lippincott, Philadelphia.Google Scholar
  18. 18.
    Farber, E., 1975, Some fundamental aspects of liver injury, in: Alcohol Liver Pathology (J. M. Khanna, Y. Israel, and H. Kalant, eds.), pp. 289–303, Addiction Research Foundation of Ontario, Toronto.Google Scholar
  19. 19.
    Judah, J. D., McLean, A. E. M., and McLean, E. K., 1970, Biochemical mechanisms of drug injury, Am. J. Med. 49: 609–614.PubMedCrossRefGoogle Scholar
  20. 20.
    Glyn, L. E., and Himsworth, H. P., 1948, Intralobular circulation in acute liver injury by carbon tetrachloride, Clin. Sci. 19: 63–67.Google Scholar
  21. 21.
    Seneviratne, R. D., 1949, Physiological and pathological responses in blood vessels of the liver, Q. J. Exp. Physiol. 35: 77–82.PubMedGoogle Scholar
  22. 22.
    Christe, G. S., and Judah, J. D., 1954, Mechanisms of action of carbon tetrachloride, Proc. R. Soc. London 142: 241–249.CrossRefGoogle Scholar
  23. 23.
    Kerr, J. F. R., 1973, Some lysosome functions in liver cells reacting to sublethal injury, in: Lysosomes in Biology and Pathology (J. Dingle, ed.), pp. 365–394, American Elsevier, New York.Google Scholar
  24. 24.
    Kamath, J. A., and Rubin, E., 1974, Effect of carbon tetrachloride and phenobarbital on plasma membranes: Enzymes and phospholipid transfer, Lab. Invest. 30: 494–499.PubMedGoogle Scholar
  25. 25.
    Govindan, V. M., Faulstich, H., Wieland, T., Agostini, B., and Hasselbach, W., 1972, In vitro effect of phalloidin on a plasma membrane preparation from rat liver, Naturwissenschaften 59: 521–528.PubMedCrossRefGoogle Scholar
  26. 26.
    Farber, J. L., and El-Mofty, S. K., 1975, The biochemical pathology of liver cell necrosis, Am. J. Pathol. 81: 237–250.PubMedGoogle Scholar
  27. 27.
    Smith, M., Thor, T., and Orrenius, S., 1981, Toxic injury to isolated hepatocytes is not dependent on extracellular calcium, Science 213: 1257–1259.PubMedCrossRefGoogle Scholar
  28. 28.
    Mitchell, J. R., Potter, W. Z., and Hinson, J. A., 1975, Toxic drug reactions, in: Concepts in Biochemical Pharmacology (J. R. Gillette ed.), pp. 383–419, Springer-Verlag, Berlin.Google Scholar
  29. 29.
    Ji, S., Lemasters, J. J., and Thurman, R. G., 1981, A fluorometric method to measure sublobular rates of mixed-function oxidation in the hemoglobin-free perfused rat liver, Mol. Pharmacol. 19: 513–516.PubMedGoogle Scholar
  30. 30.
    Matsumura, T., and Thurman, R. G., 1983, Measuring rates of O2 uptake in periportal and pericentral regions of liver lobule: Stop-flow experiments with perfused liver, Am. J. Physol. 244: G656–G659.Google Scholar
  31. 31.
    Ji, S., Lemasters, J. J., Christenson, V., and Thurman, R. G., 1982, Periportal and pericentral pyridine nucleotide fluorescence from the surface of the perfused liver: Evaluation of the hypothesis that chronic treatment with ethanol produces pericentral hypoxia, Proc. Natl. Acad. Sci. U.S.A. 79: 5415–5419.PubMedCrossRefGoogle Scholar
  32. 32.
    Rees, K. R., and Tarlow, M. J., 1967, The hepatoxic action of allyl formate, in Biochem. J. 104: 757–761.PubMedGoogle Scholar
  33. 33.
    Serafini-Cessi, F., 1972, Conversion of allyl alcohol into acrolein by rat liver, Biochem. J. 128: 1103–1107.PubMedGoogle Scholar
  34. 34.
    Patel, J. M., Wood, J. C., and Leibman, K. C., 1980, The biotransformation of allyl alcohol and acrolein in rat liver and lung preparations, Drug Metab. Dispos. 8: 305–308.PubMedGoogle Scholar
  35. 35.
    Reid, W. D., 1972, Mechanism of allyl alcohol-induced hepatic necrosis, Experientia 28: 1058–1061.PubMedCrossRefGoogle Scholar
  36. 36.
    Piazza, J. G., 1915, Toxicity of allyl formate, Z. Exp. Pathol. Ther. 17: 318–325.CrossRefGoogle Scholar
  37. 37.
    Greenberger, N. J., Cohen, R. B., and Isselbacher, K. J., 1965, The effect of chronic ethanol administration on liver alcohol dehydrogenase activity in the rat, Lab. Invest. 14: 264–271.PubMedGoogle Scholar
  38. 38.
    Belinsky, S. A., Matsumura, T., Kauffman, F. C., and Thurman, R. G., 1984, Rates of allyl alcohol metabolism in periportal and pericentral regions of the liver lobule, Mol. Pharmacol. 25: 158–164.PubMedGoogle Scholar
  39. 39.
    Matsumura, T., and Thurman, R. G., 1983, A new method to measure rates of oxygen uptake in periportal and pericentral regions of the liver lobule, Am. J. Physiol. 6: 656–659.Google Scholar
  40. 40.
    Thorgeirsson, S. S., Mitchell, J. R., Sasame, H. A., and Potter, W. Z., 1976, Biochemical changes after hepatic injury by allyl alcohol and N-hydroxy-2-acetylaminofluorene, Chem. Biol. Interact. 15: 139–147.PubMedCrossRefGoogle Scholar
  41. 41.
    Meerman, J. H. N., and Mulder, G. J., 1981, Prevention of the hepatotoxic action of N-hydroxy-2-acetylaminofluorene in the rat by inhibition of N, O-sulfation by pentachlorophenol, Life Sci. 28: 2361–2365.PubMedCrossRefGoogle Scholar
  42. 42.
    Miller, E. C., 1978, Some current perspectives on chemical carcinogenesis in humans and experimental animals, Cancer Res. 38: 1469–1496.Google Scholar
  43. 43.
    Zimmerman, H. J., 1968, The spectrum of hepatotoxicity, Perspect. Biol. Med. 12: 135.PubMedGoogle Scholar
  44. 44.
    Recknagel, R. O., and Glende, E. A., Jr., 1973, Carbon tetrachloride hepatotoxicity: An example of lethal cleavage, CRC Crit. Rev. Toxicol. 2: 263.CrossRefGoogle Scholar
  45. 45.
    Slater, T. F., 1972, Free Radical Mechanisms in Tissue Injury, pp. 118–163, Arrowsmith, Bristol.Google Scholar
  46. 46.
    Reynolds, E. S., 1972, Comparison of early injury to liver endoplasmic reticulum by halo-methanes, hexachloroethane, benezene, toluene, bromobenzene, ethionine, thioacetamide and dimethylnitrosamine, Biochem. Pharmacol. 21: 2555.PubMedCrossRefGoogle Scholar
  47. 47.
    Brauer, R. W., Leong, G. F., and Holloway, R. J., 1961, Liver injury in isolated perfused rat liver preparation exposed to chloroform, Am. J. Physiol. 200: 548.Google Scholar
  48. 48.
    Butler, T. C., 1961, Reduction of carbon tetrachloride in vivo and reduction of carbon tetrachloride and chloroform in vitro by tissue homogenates, J. Pharmacol. Exp. Ther. 134: 311.PubMedGoogle Scholar
  49. 49.
    Calligaro, A., and Vannini, V., 1975, Electron spin resonance study of homolytic cleavage of carbon tetrachloride in rat liver: Trichloromethyl free radicals, Pharmacol. Res. Commun. 7: 323.CrossRefGoogle Scholar
  50. 50.
    Redick, J. A., Jakoby, W. B., and Baron, J., 1983, Immunohistochemical localization of glutathione S-transferases in livers of untreated rats, J. Biol. Chem. 257: 15, 200–15, 203.Google Scholar
  51. 51.
    Recknagel, R. O., Glende, E. A., Waller, R. L., and Lowrey, K., 1982, Lipid peroxidation: Biochemistry, measurements, and significance in liver cell injury, in: Toxicology of the Liver (G. Plaa and W. R. Hewitt, eds.), pp. 213–241, Raven Press, New York.Google Scholar
  52. 52.
    Yoshimura, S., Komatsu, N., and Watanabe, K., 1980, Purification and immunohistochemical localization of rat liver glutathione peroxidase, Biochim. Biophys. Acta 621: 130–137.PubMedGoogle Scholar
  53. 53.
    Wolkoff, A. W., Weisiger, R. A., and Jakoby, W. B., 1979, The multiple roles of the glutathione transferases (ligandins), in: Progress in Liver Diseases, Vol. 6 (H. Popper and F. Schaffner, eds.), pp. 213–224, Grune and Stratton, New York.Google Scholar
  54. 54.
    Vander Jagt, D. L., Wilson, S. P., Dean, V. L., and Simons, P. C., 1982, Bilirubin binding to rat liver ligandins (glutathione S-transferases A and B), J. Biol. Chem. 257: 1997–2001.PubMedGoogle Scholar
  55. 55.
    Drill, V. A., 1952, Hepatotoxic agents: Mechanism of action and dietary relationship, Pharmacol. Rev. 4: 1.PubMedGoogle Scholar
  56. 56.
    Mitchell, J. R., Thorgeirsson, S. S., Potter, W. Z., Jollow, D. J., and Keiser, H., 1974, Acetaminophen-induced hepatic injury: Protective role of glutathione in man and rationale for therapy, Clin. Pharmacol. Ther. 16: 676.PubMedGoogle Scholar
  57. 57.
    Smith, G. J., Ohl, V. S., and Litwack, G., 1977, Ligandin, the glutathione S-transferases, and chemically-induced hepatocarcinogenesis: A review, Cancer Res. 37: 8–14.PubMedGoogle Scholar
  58. 58.
    Björkhem, I., 1977, Rate-limiting jstep in microsomal cytochrome P-450 catalyzed hydroxy-lations, Pharmacol. Ther. 1: 327–348.Google Scholar
  59. 59.
    Cooper, D. Y., Levin, S., Narasimihulu, S., Rosenthal, O., and Estabrook, R. W., 1965, Photochemical action spectrum of the terminal oxidase of mixed-function oxidase systems, Science 147: 400–402.PubMedCrossRefGoogle Scholar
  60. 60.
    Estabrook, R. W., and Werringloer, J., 1977, Cytochrome P-450-its role in oxygen activation for drug metabolism, in: Drug Metabolism Concepts (D. M. Jerina, ed.), pp. 16–26, American Chemical Society, Washington, D.C.Google Scholar
  61. 61.
    Lu, A. Y. H., and Levin, W., 1974, The resolution and reconstitution of the liver microsomal hydroxylation system, Biochim. Biophys. Acta 344: 205–240.PubMedGoogle Scholar
  62. 62.
    Omura, T., and Sato, R., 1964, The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature, J. Biol. Chem. 239: 2370–2378.PubMedGoogle Scholar
  63. 63.
    Omura, T., and Sato, R., 1964, The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification and properties, J. Biol. Chem. 239: 2379–2385.PubMedGoogle Scholar
  64. 64.
    Coon, M. J., Ballou, D. P., Haugen, D. A., Kzezoski, S. O., Nordblom, G. D., and White, R. E., 1977, Purification of membrane-bound oxygenases: Isolation of two electrophoretically homogenous forms of liver microsomal cytochrome P-450, in: Microsomes and Drug Oxidations (V. Ullrich, A. Hildebrandt, I. Roots, R. W. Estabrook, and A. H. Conney, eds.), pp. 82–84, Pergamon Press, New York.Google Scholar
  65. 65.
    Orrenius, S., Andersson, B., Jernström, B., and Moldeus, P., 1978, Isolated hepatocytes as an experimental tool in the study of drug conjugation reactions, in: Conjugation Reactions in Drug Biotransformation (A. Aitio, ed.), pp. 273–282, Elsevier/North-Holland, Amsterdam.Google Scholar
  66. 66.
    Kauffman, F. C., Evans, R. K., Reinke, L. A., and Thurman, R. G., 1979, Regulation of p-nitroanisole O-demethylation in perfused rat liver: Adenine nucleotide inhibition of NADP+-dependent dehydrogenases and NADPH-cytochrome c reductase, Biochem. J. 184: 675–681.PubMedGoogle Scholar
  67. 67.
    Kauffman, F. C., Evans, R. K., and Thurman, R. G., 1977, Alterations in nicotinamide and adenine nucleotide systems during mixed-function oxidation of p-nitroanisole in perfused liver from normal and phenobarbital-treated rats, Biochem. J. 167: 583–592.Google Scholar
  68. 68.
    Campbell, T. C., and Hayes, J. R., 1976, The effect of quantity and quality of dietary protein on drug metabolism, Fed. Proc. Fed. Am. Soc. Exp. Biol. 35: 2470–2474.Google Scholar
  69. 69.
    Imai, Y., Sato, R., and Iyanagi, T., 1977, Rate-limiting step in the reconstituted microsomal drug hydroxylase system, in J. Biochem. (Tokyo) 82: 1237–1246.Google Scholar
  70. 70.
    Guengerich, F. P., Ballou, D. P., and Coon, M. J., 1975, Purified liver microsomal cytochrome P-450: Electron-accepting properties and oxidation-reduction potential, J. Biol. Chem. 250: 7405–7414.PubMedGoogle Scholar
  71. 71.
    Matsubara, T., Baron, J., Peterson, L. L., and Peterson, J. A., 1976, NADPH-cytochrome P-450 reductase, Arch. Biochem. Biophys. 172: 463–469.PubMedCrossRefGoogle Scholar
  72. 72.
    Thurman, R. G., and Scholz, R., 1969, Mixed-function oxidation in perfused rat liver: The effect of aminopyrine on oxygen uptake, Eur. J. Biochem. 10: 459–467.PubMedCrossRefGoogle Scholar
  73. 73.
    Thurman, R. G., Marazzo, D. P., and Scholz, R., 1975, Mixed-function oxidation and intermediary metabolism: Metabolic interdependences in the liver, in Cytochrome P-450 and b 5 (D. Y. Cooper, O. Rosenthal, R. Snyder, and C. Witmer, eds), pp. 355–370, Plenum Press, New York.Google Scholar
  74. 74.
    Reinke, L. A., Danis, M., Belinsky, S. A., Thurman, R. G., and Kauffman, F. C., 1980, Interactions between energy metabolism and mixed-function oxidation in perfused rat liver, in: Microsomes, Drug Oxidations and Chemical Carcinogenesis, Vol. II (M. J. Coon, A. H. Conney, R. W. Estabrook, U. V. Gelboin, J. R. Gillette, and P. J. O’Brien, eds.), pp. 953–957, Academic Press, New York.Google Scholar
  75. 75.
    Thurman, R. G., Lunguin, M., Evans, R., and Kauffman, F. C., 1977, The role of reducing equivalents generated in mitochondria in hepatic mixed-function oxidation, in Microsomes and Drug Oxidation (V. Ullrich, ed.), pp. 315–322, Pergamon Press, New York.Google Scholar
  76. 76.
    Campbell, T. C., and Hayes, J. R., 1974, Role of nutrition in the drug metabolizing enzyme system, Pharmacol. Rev. 26: 171–197.PubMedGoogle Scholar
  77. 77.
    Vermillion, J. L., and Coon, M. J., 1978, Purified liver microsomal NADPH-cytochrome P-450 reductase: Spectral characterization of oxidation-reduction states, J. Biol. Chem. 253: 2694–2704.Google Scholar
  78. 78.
    Junge, O., and Brand, K., 1975, Mixed-function oxidation of hexobarbital and generation of NADPH by the hexose monophosphate shunt in isolated rat liver cells, Arch. Biochem. Biophys. 171: 398–406.PubMedCrossRefGoogle Scholar
  79. 79.
    Sies, H., Weigl, K., and Waydhaus, C., 1979, Metabolic consequences of drug oxidations in perfused liver and in isolated hepatocytes from phenobarbital-pretreated rats, in: The Induction of Drug Metabolism (R. W. Estabrook and E. L. Lindenlaub, eds.), pp. 381–400, F. K. Shattsuer Verlag, Stuttgart and New York.Google Scholar
  80. 80.
    Busch, U., 1975, Untersuchungen zur Regulation der Fettsäuresynthese in der perfundierten Rattenleber, Thesis, Medical Faculty of the University of Munich.Google Scholar
  81. 81.
    Sies, H., and Summer, K.-H., 1975, Hydroperoxide-metabolizing systems in rat liver, Eur. J. Biochem 57: 503–512.PubMedCrossRefGoogle Scholar
  82. 82.
    Eggleston, L. V., and Krebs, H.A., 1974, Regulation of the pentose phosphate cycle, Biochem. J. 138: 425–435.PubMedGoogle Scholar
  83. 83.
    Oshino, N., and Chance, B., 1977, Properties of glutathione release observed during reduction of organic hydroperoxides, demethylation of aminopyrine and oxidation of some substances in perfused rat liver, Biochem. J. 162: 509–525.PubMedGoogle Scholar
  84. 84.
    Kauffman, F. C., Evans, R. K., Reinke, L. A., Belinsky, S. A., Ballow, C., and Thurman, R. G., 1980, Effects of 3-methylcholanthrene on oxidized NADP-dependent dehydrogenases and selected metabolites in perfused rat liver, Biochem. Pharmacol. 29: 697–700.PubMedCrossRefGoogle Scholar
  85. 85.
    Sies, H., Akerboom, T. P. M., and Tager, J. M., 1977, Mitochondrial and cytosolic NADPH systems and isocitrate dehydrogenase indicator metabolites during ureogenesis from ammonia in isolated rat hepatocytes, Eur. J. Biochem. 72: 301–307.PubMedCrossRefGoogle Scholar
  86. 86.
    Tepperman, H. M., and Tepperman, J., 1964, Patterns of dietary and hormonal induction of certain NADP-linked liver enzymes, Am. J. Physiol. 206: 357–361.PubMedGoogle Scholar
  87. 87.
    Sies, H., and Brauser, B., 1970, Interaction of mixed-function oxidase with its substrates and associated redox transitions of cytochrome P-450 and pyridine nucleotides in perfused rat liver, Eur. J. Biochem. 15: 531–540.PubMedCrossRefGoogle Scholar
  88. 88.
    Thurman, R. G., Marazzo, D. R., Jones, L. S., and Kauffman, F. C., 1977, The continuous kinetic determination of p-nitroanisole O-demethylation in hemoglobin-free perfused rat liver, J. Pharmacol. Exp. Ther. 201: 498–506.PubMedGoogle Scholar
  89. 89.
    Lehninger, A. L., 1951, Phosphorylation coupled to oxidation of dihydrodiphosphopyridine nucleotide, J. Biol. Chem. 190: 345–359.PubMedGoogle Scholar
  90. 90.
    Hoek, J. B., and Ernster, L., 1974, Mitochondrial transhydrogenase and the regulation of cytosolic reducing power, in: Alcohol and Aldehyde Metabolizing Systems (R. G. Thurman, T. Yonetani, J. R. Williamson, and R. Chance, eds.), pp. 351–364, Academic Press, New York.Google Scholar
  91. 91.
    Rydstrom, J., 1972, Site-specific inhibitors of mitochondrial nicotinamide-nucleotide transhydrogenase, Eur. J. Biochem. 31: 496–504.PubMedCrossRefGoogle Scholar
  92. 92.
    Cinti, D. L., Ritchie, A., and Schenkman, J. B., 1972, Hepatic organelle interaction. II. Effect of tricarboxylic acid cycle intermediates on N-demethylation and hydroxylation reactions in rat liver, Mol. Pharmacol. 8: 338–344.Google Scholar
  93. 93.
    Cinti, D. L., and Schenkman, J. B., 1972, Hepatic organelle interaction. I. Spectral investigation during drug biotransformation, Mol. Pharmacol. 8: 338–344.Google Scholar
  94. 94.
    Belinsky, S. A., Reinke, L. A., Kauffman, F. C., and Thurman, R. G., 1980, Inhibition of mixed-function oxidation of p-nitroanisole and conjugation of p-nitrophenol in perfused rat liver by 2, 4-dinitrophenol, Arch. Biochem. Biophys. 204: 207–213.PubMedCrossRefGoogle Scholar
  95. 95.
    Williamson, D. H., Ellington, E. V., Illic, V., and Saal, J., 1973, Hepatic effects of saturated and unsaturated short-chain fatty acids and the control of ketogenesis in vivo, in: Regulation of Hepatic Metabolism (F. Lundquist and N. Tygstrup, eds.), pp. 191–206, Academic Press, New York.Google Scholar
  96. 96.
    Plaut, G. W. E., 1970, DPN-linked isocitrate dehydrogenase of animal tissue, Curr. Top. Cell. Regul. 2: 1–27.Google Scholar
  97. 97.
    Goebell, H., and Klingenberg, M., 1964, DPN-spezifische Isocitrat-dehydrogenase der Mi-tochondrien, Biochem Z. 340: 441–464.PubMedGoogle Scholar
  98. 98.
    Pette, D., 1965, Mitochondrial enzyme activities in regulation of metabolic processes in mitochondria, in: Regulation of Metabolic Processes in Mitochondria, Vol. VII (J. M. Tager, S. Papa, E. Quagliariello, and E. C. Slater, eds.), pp. 28–50, Elsevier, New York.Google Scholar
  99. 99.
    Reinke, L., Belinsky, S. A., Thurman, R. G., and Kauffman, F. C., 1980, A mechanism of inhibition of mixed-function oxidation by ethanol, in: Alcohol and Aldehyde Metabolizing Systems, Vol. IV (R. G. Thurman, ed.), pp. 151–162, Plenum Press, New York.Google Scholar
  100. 100.
    Weigl, K., and Sies, H., 1977, Drug oxidations dependent on cytochrome P-450 in isolated hepatocytes, Eur. J. Biochem. 77: 401–408.PubMedCrossRefGoogle Scholar
  101. 101.
    Thurman, R. G., and Scholz, R., 1973, Interaction of mixed-function oxidation with biosyn-thetic processes. 2. Inhibition of lipogenesis by aminopyrine in perfused rat liver, Eur. J. Biochem. 38: 73–78.PubMedCrossRefGoogle Scholar
  102. 102.
    Thurman, R. G., Reinke, L. A., and Kauffman, F. C., 1979, The isolated perfused liver: A model to define biochemical mechanisms of chemical toxicity, Biochem. Toxicol. 1: 249–285.Google Scholar
  103. 103.
    Grundin, R., Moldéus, P., Vadi, H., Orrenius, S., Von Bahr, C., Bäckström, D., and Ehrenberg, A., 1975, Drug metabolism in isolated rat liver cells, Adv. Exp. Med. Biol. 58: 251–269.Google Scholar
  104. 104.
    Sies, H., and Kandel, M., 1970, Positive increase of redox potential of the extramitochondrial NADP(H) system by mixed-function oxidations in hemoglobin-free perfused rat liver, FEBS Lett. 9: 205–208.PubMedCrossRefGoogle Scholar
  105. 105.
    Afolayan, A., 1972, Regulation and kinetics of glucose-6-phosphate dehydrogenase from Candida utilis, Biochemistry 11: 4172–4178.PubMedCrossRefGoogle Scholar
  106. 106.
    Avigad, G., 1966, Inhibition of glucose-6-phosphate dehydrogenase by adenosine 5′-triphos-phate, Proc. Nat. Acad. Sci. U.S.A. 56: 1543–1547.CrossRefGoogle Scholar
  107. 107.
    Kauffman, F. C., and Johnson, E. C., 1970, Regulatory properties of 6-P-gluconate dehydrogenase from mammalian brain, Fed Proc. 29: 892.Google Scholar
  108. 108.
    Passonneau, J. V., Schultz, D., and Lowry, O. H., 1966, The kinetics of glucose-6-P-dehydrogenase, Fed Proc. 25: 219 (Abstract 167).Google Scholar
  109. 109.
    Maenpaa, P. H., Raivio, K. O., and Kekomaki, M. P., 1968, Liver adenine nucleotides: Fructose-induced depletion and its effect on protein synthesis, Science 161: 1253–1254.PubMedCrossRefGoogle Scholar
  110. 110.
    Woods, H. F., Eggleston, L. V., and Krebs, H. A., 1970, The cause of hepatic accumulation of fructose 1-phosphate on fructose loading, Biochem. J. 119: 501–510.PubMedGoogle Scholar
  111. 111.
    Roach, M. K., 1975, Microsomal ethanol oxidation: Activity in vitro and in vivo, in: Biochemical Pharmacology of Ethanol (E. Majchrowicz, ed.), pp. 33–56, Plenum Press, New York.Google Scholar
  112. 112.
    Thurman, R. G., 1977, Hepatic alcohol oxidation and its metabolic liability, Fed. Proc. 36: 1640–1646.PubMedGoogle Scholar
  113. 113.
    Thurman, R. G., Reinke, L. A., Belinsky, S. A., and Kauffman, F. C., 1980, The influence of the nutritional state in rates of p-nitroanisole O-demethylation and p-nitrophenol conjugation in perfused rat liver, in: Microsomes, Drug Oxidations and Chemical Carcinogenesis, Vol. II (M. J. Coon, A. H. Conney, R. W. Estabrook, H. V. Gelboin, J. R. Gillette, and P. J. O’Brien, eds.), pp. 913–916, Academic Press, New York.Google Scholar
  114. 114.
    Orme-Johnson, W. H., and Ziegler, D. M., 1965, Alcohol mixed-function oxidation activity of mammalian liver microsomes, Biochem. Biophys. Res. Commun. 21: 78–82.PubMedCrossRefGoogle Scholar
  115. 115.
    Thurman, R. G., Ley, H. G., and Scholz, R., 1972, Hepatic microsomal ethanol oxidation, Eur. J. Biochem. 25: 420–43.PubMedCrossRefGoogle Scholar
  116. 116.
    Thurman, R. G., and Scholz, R., 1973, The role of hydrogen peroxide and catalase in hepatic microsomal ethanol oxidation, Drug Metab. Dispos. 1: 441–448.PubMedGoogle Scholar
  117. 117.
    Vatsis, K. P., and Coon, M. J., 1977, On the question of whether cytochrome P-450 catalyzes ethanol oxidation: Studies with purfied forms of the cytochrome from rabbit liver microsomes, in: Alcohol and Aldehyde Metabolizing Systems, Vol. II (R. G. Thurman, J. R. Williamson, H. Drott, and B. Chance, eds.), pp. 307–322, Academic Press, New York.Google Scholar
  118. 118.
    Miwa, G. T., Levin, W., Thomas, P. F., and Lu, A. Y. H., 1977, Evidence for the direct involvement of hepatic cytochrome P-450 in ethanol metabolism, in: Alcohol and Aldehyde Metabolizing Systems, Vol. II (R. G. Thurman, J. R. Williamson, H. Drott, and B. Chance, eds.), pp. 323–340, Academic Press, New York.Google Scholar
  119. 119.
    Ohnishi, K., and Lieber, C. A., 1977, Reconstitution of the hepatic microsomal ethanol oxidizing system (MEOS) in control rats after ethanol feeding, in: Alcohol and Aldehyde Metabolizing Systems, Vol. II (R. G. Thurman, J. R. Williamson, H. Drott, and B. Chance, eds.), pp. 341–350, Academic Press, New York.Google Scholar
  120. 120.
    Mezey, E., 1976, Ethanol metabolism and ethanol-drug interactions, Biochem. Pharmacol. 25: 869–875.PubMedCrossRefGoogle Scholar
  121. 121.
    Rubin, E., Gang, A., Misra, P. S., and Lieber, C. S., 1970, Inhibition of drug metabolism by acute ethanol intoxication, Am. J. Med. 49: 801–806.PubMedCrossRefGoogle Scholar
  122. 122.
    Imai, Y., and Sato, R., 1967, Studies on the substrate interactions with P-450 in drug hy-droxylation by liver microsomes, J. Biochem. (Tokyo) 82: 1237–1246.Google Scholar
  123. 123.
    Reinke, L. A., Kauffman, F. C., and Thurman, R. G., 1979, Stimulation of p-nitroanisole O-demethylation in perfused livers from fasted rats, J. Pharmacol. Exp. Ther. 211: 133–139.PubMedGoogle Scholar
  124. 124.
    Grundin, R., 1975, Metabolic interaction of ethanol and alprenolol in isolated liver cells, Acta Pharmacol. Toxicol. 37: 185–200.CrossRefGoogle Scholar
  125. 125.
    Reinke, L. A., Kauffman, F. C., and Thurman, R. G., 1980, Stimulation of p-nitroanisole O-demethylation in perfused rat livers by xylitol and sorbitol, Biochem. Pharmacol. 28: 813–819.CrossRefGoogle Scholar
  126. 126.
    Correia, M. A., and Mannering, G. J., 1973, Reduced diphosphopyridine nucleotide synergism of the reduced triphosphopyridine nucleotide-dependent mixed-function oxidase system of hepatic microsomes. I. Effects of activation and inhibition of the fatty acyl coenzyme A desaturation system, Mol. Pharmacol. 9: 455–469.PubMedGoogle Scholar
  127. 127.
    Mannering, G. J., 1973, Microsomal enzyme systems which catalyze drug metabolism, in: Fundamentals of Drug Metabolism and Drug Disposition (B. N. La Du, H. G. Mandel, and E. C. Way, eds.), pp. 206–214, Williams & Wilkins, Baltimore.Google Scholar
  128. 128.
    Raj, H. G., and Venkitasubramanian, T. A., 1974, Carbohydrate metabolism in aflatoxin B1 toxicity, Environ. Physiol. Biochem. 4: 181–187.PubMedGoogle Scholar
  129. 129.
    Hildebrandt, A., and Estabrook, R. W., 1971, Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidation reactions, Arch. Biochem. Biophys. 143: 66–79.PubMedCrossRefGoogle Scholar
  130. 130.
    Reinke, L. A., Kauffman, F. C., Belinsky, S. A., and Thurman, R. G., 1980, Interactions between ethanol metabolism and mixed-function oxidation in perfused rat liver: Inhibition of p-nitroanisole O-demethylation, J. Pharmacol Exp. Ther. 213: 70–78.PubMedGoogle Scholar
  131. 131.
    Lieber, C. A., and Decarli, L. M., 1970, Reduced nicotinamide-adenine dinucleotide phosphate oxidase: Activity enhanced by ethanol consumption, Science 170: 78–79.PubMedCrossRefGoogle Scholar
  132. 132.
    Thurman, R. G., 1973, Induction of hepatic microsomal reduced nicotinamide adenine dinucleotide phosphate-dependent production of hydrogen peroxide by chronic prior treatment with ethanol, Mol. Pharmacol. 9: 670–675.PubMedGoogle Scholar
  133. 133.
    Tobon, F., and Mezey, E., 1971, Effect of ethanol administration on hepatic ethanol and drug-metabolizing enzymes on rates of ethanol degradation, J. Lab. Clin. Med. 77: 110–121.PubMedGoogle Scholar
  134. 134.
    Khanna, J. M., Kalant, H., Lin, G., and Bustos, G. O., 1971, Effect of carbon tetrachloride treatment on ethanol metabolism, Biochem. Pharmacol. 20: 3269–3279.PubMedCrossRefGoogle Scholar
  135. 135.
    Mezey, E., 1972, Duration of the enhanced activity of the microsomal ethanol-oxidizing enzyme system and rate of ethanol degradation in ethanol-fed rats after withdrawal, Biochem. Pharmacol. 21: 137–142.PubMedCrossRefGoogle Scholar
  136. 136.
    Novikoff, A. B., 1959, Cell heterogeneity within the hepatic lobule of the rat (staining reactions), J. Histochem. Cytochem. 7: 240–244.PubMedCrossRefGoogle Scholar
  137. 137.
    Novikoff, A. B., and Essner, E., 1960, The liver cell: Some new approaches to its study, Am. J. Med. 29: 102–131.PubMedCrossRefGoogle Scholar
  138. 138.
    Katz, N., and Jungermann, K., 1976, Autoregulatory shift from fructolysis to lactate gluco-neogenesis in rat hepatocyte suspensions: The problem of metabolic zonation of liver parenchyma, Hoppe-Seyler’s Z. Physiol. Chem. 357: 359–375.PubMedCrossRefGoogle Scholar
  139. 139.
    Jungermann, K., and Sasse, D., 1978, Heterogeneity of liver parenchymal cells, Trends Biochem. Sci. 3: 198–202.CrossRefGoogle Scholar
  140. 140.
    Rappaport, A. M., 1979, Physioanatomical basis of toxic liver injury, in: Toxic Injury of the Liver, Part A (E. Farber and M. M. Fisher, eds.), pp. 1–57, Marcel Dekker, New York.Google Scholar
  141. 141.
    Jungermann, K., Heilbronn, R., Katz, N., and Sasse, D., 1982, The glucose-glucose-6-phosphate cycle in the periportal and perivenous zones of rat liver, Eur. J. Biochem. 123: 429–436.PubMedCrossRefGoogle Scholar
  142. 142.
    Andersen, B., Nath, A., and Jungermann, K., 1982, Heterogeneous distribution of phos-phoenolpyruvate carboxykinase in rat liver parenchyma, isolated, and cultured hepatocytes, Eur. J. Cell Biol. 28: 47–53.PubMedGoogle Scholar
  143. 143.
    Jungermann, K., and Katz, N., 1982, Functional hepatocellular heterogeneity, Hepatology 2: 385–395.PubMedCrossRefGoogle Scholar
  144. 144.
    Katz, N. R., Fischer, W., and Ick, M., 1983, Heterogeneous distribution of ATP citrate lyase in rat-liver parenchyma: Microradiochemical determination in microdissected periportal and perivenous liver tissue, Eur. J. Biochem. 130: 297–301.PubMedCrossRefGoogle Scholar
  145. 145.
    Gumucio, J. J., DeMason, L. J., Miller, D. L., Krezoski, S. O., and Keener, M., 1978, Induction of cytochrome P-450 in a selective subpopulation of hepatocytes, Am. J. Physiol. 234: C102–C109.PubMedGoogle Scholar
  146. 146.
    Sweeney, G. D., Garfield, R. E., Jones, K. G., and Latham, A. N., 1978, Studies using sedimentation velocity on heterogeneity of size and function of hepatocytes from mature male rats, J. Lab. Clin. Med. 91: 432–443.PubMedGoogle Scholar
  147. 147.
    Tonda, K., Hasegawa, T., and Hirata, M., 1983, Effects of phenobarbital and 3-methyl-cholanthrene pretreatments on monooxygenase activities and proportions of isolated rat hepatocyte populations, Mol. Pharmacol. 23: 235–343.PubMedGoogle Scholar
  148. 148.
    Brodie, B. B., Reid, W. D., Cho, A. K., Sipes, G., Krishna, G., and Gillette, J. R., 1971, Possible mechanism of liver necrosis caused by aromatic organic compounds, Proc. Natl. Acad. Sci. U.S.A. 68: 160–164.PubMedCrossRefGoogle Scholar
  149. 149.
    Jollow, D. J., Mitchell, J. R., Potter, W. Z., Davis, D. C., Gillette, J. R., and Brodie, B.B., 1973, Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo, J. Pharmacol. Exp. Ther. 187: 185–202.PubMedGoogle Scholar
  150. 150.
    James, R., Desmond, P., Kupfer, A., Schenker, S., and Branch, R. A., 1981, The differential localization of various drug metabolizing systems within the rat liver lobule as determined by the hepatotoxins allyl alcohol, carbon tetrachloride and bromobenzene, J. Pharmacol. Exp. Ther. 217: 127–132.PubMedGoogle Scholar
  151. 151.
    Willson, R. A., and Hart, J. R., 1981, In vivo drug metabolism and liver lobule heterogeneity in the rat, Gastroenterology 81: 563–569.PubMedGoogle Scholar
  152. 152.
    Gumbrecht, J. R., and Franklin, M. R., 1983, The alteration of hepatic cytochrome P-450 subpopulations of phenobarbital-induced and uninduced rat by regioselective hepatotoxins, Drug Metab. Dispos. 11: 312–318.PubMedGoogle Scholar
  153. 153.
    Reinke, L. A., Belinsky, S. A., Evans, R. K., Kauffman, F. C., and Thurman, R. G., 1981, Conjugation of p-nitrophenol in the perfused rat liver: The effect of substrate concentration and carbohydrate reserves, J. Pharmacol. Exp. Ther. 217: 863–870.PubMedGoogle Scholar
  154. 154.
    Conway, J. G., Kauffman, F. C., Ji, S., and Thurman, R. G., 1982, Rates of sulfation and glucuronidation of 7-hydroxycoumarin in periportal and pericentral regions of the liver lobule, Mol. Pharmacol. 22: 509–516.PubMedGoogle Scholar
  155. 155.
    Pang, K. S., Koster, H., Halsema, I. C. M., Scholtens, E., and Mulder, G. J., 1981, Aberrant pharmocokinetics of harmol in the perfused rat liver preparation: Sulfate and glucuronide conjugations, J. Pharmacol. Exp. Ther. 219: 134–140.PubMedGoogle Scholar
  156. 156.
    Pang, K. S., and Terrell, J. A., 1981, Retrograde perfusion to probe the heterogeneous distribution of hepatic drug metabolizing enzymes in rats, J. Pharmacol. Exp. Ther. 216: 339–346.PubMedGoogle Scholar
  157. 157.
    Pang, K. S., Koster, H., Halsema, I. C. M., Scholtens, E., Mulder, G. J., and Stillwell, R. N., 1983, Normal and retrograde perfusion to probe the zonal distribution of sulfation and glucuronidation activities of harmol in the perfused rat liver preparation, J. Pharmacol Exp. Ther. 224: 647–653.PubMedGoogle Scholar
  158. 158.
    Wattenberg, L. W., and Leong, J. L., 1962, Histochemical demonstration of reduced pyridine nucleotide dependent polycyclic hydrocarbon metabolizing systems, J. Histochem. Cytochem. 10: 412–420.CrossRefGoogle Scholar
  159. 159.
    Koudstaal, J., and Hardonk, M. J., 1969, Histochemical demonstration of enzymes related to NADPH-dependent hydroxylating systems in rat liver after phenobarbital treatment, Histo-chemie 20: 68–77.Google Scholar
  160. 160.
    Gangolli, S., and Wright, M., 1971, The histochemical demonstration of aniline hydroxylase activity in rat liver, Histochem. J. 3: 107–116.PubMedCrossRefGoogle Scholar
  161. 161.
    Grasso, P., Williams, M., Hodgson, R., Wright, M. G., and Gangolli, S. D., 1971, The histochemical distribution of aniline hydroxylase in rat tissues, Histochem. J. 3: 117–126.PubMedCrossRefGoogle Scholar
  162. 162.
    Baron, J., Kawabata, T. T., Knapp, S. A., Voigt, J. M., Redick, J. A., Jakoby, W. B., and Guengerich, F. P., 1984, Intrahepatic distribution of xenobiotic-metabolizing enzymes, in: Foreign Compound Metabolism (J. Caldwell and G. D. Paulson, eds.), pp. 17–36, Taylor & Francis, London.Google Scholar
  163. 163.
    Altman, F. P., Moore, D. S., and Chayen, J., 1975, The direct measurement of cytochrome P-450 in unfixed tissue sections, Histochemistry 41: 227–232.PubMedCrossRefGoogle Scholar
  164. 164.
    Gooding, P. E., Chayen, J., Sawyer, B., and Slater, T. F., 1978, Cytochrome P-450 distribution in rat liver and the effect of sodium phenobarbitone administration, Chem.-Biol. Interact. 20: 299–310.PubMedCrossRefGoogle Scholar
  165. 165.
    Chayen, J., Bitensky, L., Johnstone, J. J., Gooding, P. E., and Slater, T. F., 1979, The application of microspectrophotometry to the measurement of cytochrome P-450, in: Quantitative Cytochemistry and Its Applications (J. R. Pattison, L. Bitensky, and J. Chayen, eds.), pp. 129–137, Academic Press, New York.Google Scholar
  166. 166.
    Smith, M. T., and Wills, E. D., 1981, Effects of dietary lipid and phenobarbitone on the distribution and concentration of cytochrome P-450 in the liver studied by quantitative cytochemistry, FEBS Lett. 127: 33–36.PubMedCrossRefGoogle Scholar
  167. 167.
    Smith, M. T., and Wills, E. D., 1981, The effects of dietary lipid and phenobarbitone on the production and utilization of NADPH in the liver: A combined biochemical and quantitative cytochemical study, Biochem. J. 200: 691–699.PubMedGoogle Scholar
  168. 168.
    Ji, S., Lemasters, J. J., and Thurman, R. G., 1980, A non-invasive method to study metabolic events within sublobular regions of hemoglobin-free perfused liver, FEBS Lett. 113: 37–41.PubMedCrossRefGoogle Scholar
  169. 169.
    Redick, J. A., Kawabata, T. T., Guengerich, F. P., Krieter, P. A., Shires, T. K., and Baron, J., 1980, Distributions of monooxygenase components and epoxide hydratase within the livers of untreated male rats, Life Sci. 27: 2465–2470.PubMedCrossRefGoogle Scholar
  170. 170.
    Baron, J., Taira, Y., Redick, J. A., Greenspan, P., Kapke, G. F., and Guengerich, F. P., 1980, Effects of xenobiotics on the distributions of monooxygenase components in liver, in: Microsomes, Drug Oxidations and Chemical Carcinogenesis, Vol. II (M. J. Coon, A. H. Conney, R. W. Estabrook, H. V. Gelboin, J. R. Gillette, and P. J. O’Brien, eds.), pp. 501–504, Academic Press, New York.Google Scholar
  171. 171.
    Masters, B. S. S., Yasukochi, Y., Okita, R. T., Parkhill, L. K., Taniguchi, H., and Dees, J. H., 1980, Laurate hydroxylation and drug metabolism in pig liver and kidney, in Microsomes, Drug Oxidations and Chemical Carcinogenesis, Vol. II (M. J. Coon, A. H. Conney, R. W. Estabrook, H. V. Gelboin, J. R. Gillette, and P. J. O’Brien, eds.), pp. 709–719, Academic Press, New York.Google Scholar
  172. 172.
    Koyada, A. Yu., 1981, Immunohistochemical localization of cytochrome P-450 in rat liver during phenobarbital induction, Bull. Exp. Biol. Med. 92: 994–996.CrossRefGoogle Scholar
  173. 173.
    Dees, J. H., Masters, B. S. S., Muller-Eberhard, U., and Johnson, E. F., 1982, Effect of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin and phenobarbital on the occurrence and distribution of four cytochrome P-450 isozymes in rabbit kidney, lung, and liver, in Cancer Res. 42: 4123–4132.Google Scholar
  174. 174.
    Ohnishi, K., Mishima, A., and Okuda, K., 1982, Immunofluorescence of phenobarbital in-ducible cytochrome P-450 in the hepatic lobule of normal and phenobarbital inducible cytochrome P-450 in the hepatic lobule of normal and phenobarbital-treated rats, Hepatology 2: 849–855.PubMedCrossRefGoogle Scholar
  175. 175.
    Moody, D. E., Taylor, L. A., Smuckler, E. A., Levin, W., and Thomas, P. E., 1983, Immunohistochemical localization of cytochrome P-450a in liver sections from untreated rats and rats treated with phenobarbital or 3-methylcholanthrene, Drug Metab. Dispos. 11: 339–343.PubMedGoogle Scholar
  176. 176.
    Muller-Eberhard, U., Yam, L., Tavassoli, M., Cox, K., and Ozols, J., 1974, Immunohistochemical demonstration of cytochrome b 5 and hemopexin in rat liver parenchymal cells using horseradish peroxidase, Biochem. Biophys. Res. Commun. 61: 983–988.PubMedCrossRefGoogle Scholar
  177. 177.
    Franke, W. W., Fink, A., and Schmid, E., 1978, Demonstration of the display of components of the endoplasmic reticulum by indirect fluorescence microscopy using antibodies against cytochrome b 5 from rat liver microsomes, Cell Biol. Int. Rep. 2: 465–474.PubMedCrossRefGoogle Scholar
  178. 178.
    Bentley, P., Waechter, F., Oesch, F., and Staubli, W., 1979, Immunochemical localization of epoxide hydratase in rat liver: Effects of 2 acetylaminofluorene, Biochem. Biophys. Res. Commun. 91: 1101–1108.PubMedCrossRefGoogle Scholar
  179. 179.
    Enomoto, K., Ying, T. S., Griffin, M. J., and Farber, E., 1981, Immunohistochemical study of epoxide hydrolase during experimental liver carcinogenesis, Cancer Res. 41: 3281–3287.PubMedGoogle Scholar
  180. 180.
    Bannikov, G. A., Guelstein, V. I., and Tchipsheva, T. A., 1973, Distribution of basic azo dye binding protein in normal rat tissues and carcinogen-induced liver tumors, Int. J. Cancer 11: 398–411.PubMedCrossRefGoogle Scholar
  181. 181.
    Fleischner, G. M., Robbins, J. B., and Arias, I. M., 1977, Cellular localization of ligandin in rat, hamster, and man, Biochem. Biophys. Res. Commun. 74: 992–1000.PubMedCrossRefGoogle Scholar
  182. 182.
    Campbell, J. A. H., Bass, N. M., and Kirsch, R. E., 1980, Immunohistological localization of ligandin in human tissues, Cancer 45: 503–510.PubMedCrossRefGoogle Scholar
  183. 183.
    Baron, J., Redick, J. A., and Guengerich, F. P., 1978, Immunohistochemical localizations of cytochromes P-450 in rat liver, Life Sci. 23: 2627–2632.PubMedCrossRefGoogle Scholar
  184. 184.
    Baron, J., Redick, J. A., and Guengerich, F. P., 1981, An immunohistochemical study on the localizations and distributions of phenobarbital and 3-methylcholanthrene-inducible cyto-chromes P-450 within the livers of untreated rats, J. Biol. Chem. 256: 5931–5937.PubMedGoogle Scholar
  185. 185.
    Baron, J., Redick, J. A., and Guengerich, F. P., 1982, Effects of 3-methylcholanthrene, β-naphthoflavone, and phenobarbital on the 3-methylcholanthrene-inducible isozymes of cyto-chrome P-450 within centrilobular, midzonal, and periportal hepatocytes, J. Biol. Chem. 257: 953–957.PubMedGoogle Scholar
  186. 186.
    Guengerich, F. P., 1977, Separation and purification of multiple forms of microsomal cytochrome P-450: Activities of different forms of cytochrome P-450 towards several compounds of environmental interest, J. Biol. Chem. 252: 3970–3979.PubMedGoogle Scholar
  187. 187.
    Guengerich, F. P., 1978, Separation and purification of multiple forms of microsomal cytochrome P-450: Partial characterization of three apparently homogeneous cytochromes P-450 prepared from livers of phenobarbital and 3-methylcholanthrene-treated rats, J. Biol. Chem. 253: 7931–7979.PubMedGoogle Scholar
  188. 188.
    Guengerich, F. P., Danna, G. A., Wright, S. T., Martin, M. V., and Kaminsky, L. S., 1982, Purification and characterization of liver microsomal cytochromes P-450: Electro-phoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital and β-naphthoflavone, Biochemistry 21: 6019–6030.PubMedCrossRefGoogle Scholar
  189. 189.
    Tuchweber, G., Werringloer, J., and Kourounakis, P., 1974, Effect of phenobarbital or preg-nenolone-16-α-carbonitrile (PCN) pretreatment on acute carbon tetrachloride hepatotoxicity in rats, Biochem. Pharmacol. 23: 513–518.PubMedCrossRefGoogle Scholar
  190. 190.
    Baron, J., Redick, J. A., Greenspan, P., and Taira, Y., 1978, Immunohistochemical localization of NADPH-cytochrome c reductase in rat liver, Life Sci. 22: 1097–1102.PubMedCrossRefGoogle Scholar
  191. 191.
    Taira, Y., Redick, J. A., and Baron, J., 1980, An immunohistochemical study on the localization and distribution of NADPH-cytochrome c (P-450) reductase in rat liver, Mol. Pharmacol. 17: 374–381.PubMedGoogle Scholar
  192. 192.
    Taira, Y., Greenspan, P., Kapke, G. F., Redick, J. A., and Baron, J., 1980, Effects of phenobarbital, pregnenolone-16-α-carbonitrile and 3-methylcholanthrene pretreatments on the distributions of NADPH-cytochrome c (P-450) reductase within the liver lobule, Mol. Pharmacol. 18: 304–312.PubMedGoogle Scholar
  193. 193.
    Dees, J. H., Coe, L. D., Yasukochi, Y., and Masters, B. S. S., 1980, Immunofluorescence of NADPH-cytochrome c (P-450) reductase in rat and guinea pig tissues injected with phenobarbital, Science 208: 1473–1475.PubMedCrossRefGoogle Scholar
  194. 194.
    Smith, M. T., Redick, J. A., and Baron, J., 1983, Quantitative immunohistochemistry: A comparison of microdensitometric analysis of unlabeled antibody staining and of microfluo-rometric analysis of indirect fluorescent antibody staining for nicotinamide adenosine dinu-cleotide phosphate (NADPH)-cytochrome c (P-450) reductase in rat liver, J. Histochem. Cy-tochem. 31: 1183–1189.CrossRefGoogle Scholar
  195. 195.
    Tavassoli, M., Ozols, J. Sugimoto, G., Cox, K. H., and Muller-Eberhard, U., 1976, Localization of cytochrome b 5 in rat organs and tissues by immunohistochemistry, Biochem. Biophys. Res. Commun. 72: 281–287.PubMedCrossRefGoogle Scholar
  196. 196.
    Jerina, D. M., and Daly, J. W., 1974, Arene oxides: A new aspect of drug metabolism, Science 185: 573–582.PubMedCrossRefGoogle Scholar
  197. 197.
    Oesch, F., 1973, Mammalian epoxide hydratases: Inducible enzymes catalyzing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds, Xenobiotica 3: 305–340.PubMedCrossRefGoogle Scholar
  198. 198.
    Huberman, E., Sachs, L., Yang, S. K., and Gelboin, H. V., 1976, Identification of muta-genic metabolites of benzo[a]pyrene in mammalian cells, Proc. Natl. Acad. Sci. U.S.A. 73: 607–611.PubMedCrossRefGoogle Scholar
  199. 199.
    Baron, J., Redick, J. A., and Guengerich, F. P., 1980, Immunohistochemical localization of epoxide hydratase in rat liver, Life Sci. 26: 489–493.PubMedCrossRefGoogle Scholar
  200. 200.
    Kawabata, T. T., Guengerich, F. P., and Baron, J., 1981, An immunohistochemical study on the localization and distribution of epoxide hydrolase within livers of untreated rats, Mol. Pharmacol. 20: 709–714.PubMedGoogle Scholar
  201. 201.
    Kawabata, T. T., Guengerich, F. P., and Baron, J., 1983, Effects of phenobarbital, trans-stilbene oxide, and 3-methycholanthrene on epoxide hydrolase within centrilobular, midzonal, and periportal regions of rat liver, J. Biol. Chem. 258: 7767–7773.PubMedGoogle Scholar
  202. 202.
    Thurman, R. G., and Kauffman, F. C., 1980, Factors regulating drug metabolism in intact hepatocytes, Pharmacol. Rev. 31: 229–251.Google Scholar
  203. 203.
    Junge, O., and Brand, K., 1975, Mixed-function oxidation of hexobarbital and generation of NADPH by the hexose monophosphate shunt in isolated rat liver cells, Arch. Biochem. Biophys. 171: 398–406.PubMedCrossRefGoogle Scholar
  204. 204.
    Purvis, J. L., and Lowenstein, J. M., 1961, The relation between intra-and extramitochondrial pyridine nucleotides, J. Biol. Chem. 236: 2794–2803.PubMedGoogle Scholar
  205. 205.
    Shank, R. E., Morrison, G., Cheng, C. H., Karl, J., and Schwartz, R., 1959, Cell heterogeneity within the hepatic lobule (quantitative histochemistry), J. Histochem. Cytochem. 7: 237–239.PubMedCrossRefGoogle Scholar
  206. 206.
    Welsh, F. A., 1972, Changes in distribution of enzymes within the liver lobule during adaptive increases, J. Histochem. Cytochem. 20: 107–111.PubMedCrossRefGoogle Scholar
  207. 207.
    Wimmer, M., and Pette, D., 1979, Microphotometric studies on intraacinar enzyme distribution in a rat liver, Histochemistry 64: 23–33.PubMedCrossRefGoogle Scholar
  208. 208.
    Morrison, G. R., Brock, F. E., and Karl, J. E., 1965, Quantitative analysis of regenerating and degenerating areas in the liver lobule of the carbon tetrachloride, Arch. Biochem. Biophys. 111: 448–460.PubMedCrossRefGoogle Scholar
  209. 209.
    Rieder, H., 1981, NADP-dependent dehydrogenases in rat liver parenchyma. III. The description of a liponeogenic area on the basis of histochemically demonstrated enzyme activities and the neutral fat content during fasting and refeeding, Histochemistry 72: 579–615.PubMedCrossRefGoogle Scholar
  210. 210.
    Schwarz, G., 1978, Quantitative investigations of the zonal distribution of SDH, G6Pase and malic enzyme activity in liver parenchyma, Acta Histochem. 62: 133–141.PubMedCrossRefGoogle Scholar
  211. 211.
    Loud, A. V., 1968, A quantitative stereological description of the ultrastructure of normal rat liver parenchyma cells, J. Cell Biol. 37: 27–46.PubMedCrossRefGoogle Scholar
  212. 212.
    Jones, A. L., Schmucker, D. L., Mooney, J. S., Adler, R. D., and Ockner, R. K., 1976, Morphometric analysis of rat hepatocytes after total biliary obstruction, Gastroenterology 71: 1050–1060.PubMedGoogle Scholar
  213. 213.
    Jones, A. L., Schmucker, D. L., Mooney, J. S., Adler, R. D., and Ockner, R. K., 1978, The quantitative analysis of hepatic ultrastructure in rats during enhanced bile secretion, Anat. Rec. 192: 1277–288.CrossRefGoogle Scholar
  214. 214.
    Schmucker, D. L., Mooney, J. S., and Jones, A. L., 1978, Stereological analysis of hepatic fine structure in the Fisher 344 rat: Influence of sublobular location and animal age, J. Cell Biol. 78: 319–337.PubMedCrossRefGoogle Scholar
  215. 215.
    Ghosh, A. K., Finegold, D., White, W., Zawalich, K., and Matscinsky, F. M., 1982, Quantitative histochemical resolution of oxidation-reduction and phosphate potentials within the simple hepatic acinus, J. Biol. Chem. 257: 5476–5481.PubMedGoogle Scholar
  216. 216.
    Belinsky, S. A., Kauffman, F. C., Ji, S., Lemasters, J. J., and Thurman, R. G., 1983, Stimulation of mixed-function oxidation of 7-ethoxycoumarin in periportal and pericentral regions of the perfused rat liver by xylitol, Eur. J. Biochem. 137: 1–6.PubMedCrossRefGoogle Scholar
  217. 217.
    Jakob, A., Williamson, J. R., and Asakura, T., 1971, Xylitol metabolism in perfused liver: Interactions with gluconeogenesis and ketogenesis, J. Biol. Chem. 246: 7623–7631.PubMedGoogle Scholar
  218. 218.
    Correia, M. A., and Mannering, G. J., 1973, DPNA synergism of TPNH-dependent mixed-function oxidase reactions, Drug Metab. Dispos. 1: 139–146.PubMedGoogle Scholar
  219. 219.
    Reinke, L. A., Belinsky, S. A., Kauffman, F. C., Evans, R. K., and Thurman, R. G., 1982, Regulation of NADPH-dependent mixed-function oxidation in perfused livers: Comparative studies with sorbitol and ethanol, Biochem. Pharmacol. 31: 1621–1624.PubMedCrossRefGoogle Scholar
  220. 220.
    Belinsky, S. A., Reinke, L. A., Kauffman, F. C., Scholz, R., and Thurman, R. G., 1981, Metabolism of p-nitroanisole in perfused rat liver in absence of NADPH generation from the pentose phosphate shunt, Fed. Proc. Fed. Am. Soc. Exp. Biol. 40: 2874.Google Scholar
  221. 221.
    Thomas, P. E., Reik, L. M., Ryan, D. E., and Levin, W., 1981, Regulation of three forms of cytochrome P-450 and epoxide hydrolise in rat liver microsomes, J. Biol. Chem. 256: 1044–1052.PubMedGoogle Scholar
  222. 222.
    Ryan, D. E., Thomas, D. E., Korzeniowski, D., and Levin, W., 1979, Separation and characterization of highly perfused forms of microsomal cytochrome P-450 from rats treated with polychlorinated biphenyls, phenoborbital, and 3-methylcholanthrene, J. Biol. Chem. 254: 1365–1374.PubMedGoogle Scholar
  223. 223.
    Dannan, G. A., Guengerich, F. P., Kaminsky, O. S., and Aust, S. O., 1983, Regulation of cytochrome P-450, J. Biol. Chem. 258: 1282–1288.PubMedGoogle Scholar
  224. 224.
    Belinsky, S. A., Kauffman, F. C., and Thurman, R. G., 1984, Reducing equivalents for mixed-function oxidation in periportal and pericentral regions of the liver lobule in perfused livers from normal and phenobarbital-treated rats, Mol. Pharmacol. 26: 574–581.PubMedGoogle Scholar
  225. 225.
    Belinsky, S. A., Kauffman, F. C., and Thurman, R. G., 1983, Mixed-function oxidation of 7-ethoxycoumarin in β-naphthoflavone-treated rats: Sources of reducing equivalents in periportal and pericentral regions of the liver lobule, Fed. Proc. Fed. Am. Soc. Exp. Biol. 42: 1141.Google Scholar
  226. 226.
    Aitio, A., 1978, Conjugation Reactions in Drug Biotransformations, Elsevier/North Holland, Amsterdam.Google Scholar
  227. 227.
    Reinke, L. A., Kauffman, F. C., Evans, R. K., Belinsky, S. A., and Thurman, R. G., 1979, p-Nitrophenol conjugation in perfused livers from normal and phenobarbital-treated rats: Influence of nutritional state, Res. Commun. Chem. Pathol. Pharmacol. 23: 813–819.Google Scholar
  228. 228.
    Thurman, R. G., Reinke, L. A., Belinsky, S. A., and Kauffman, F. C., 1980, The influence of the nutritional state on rates of p-nitroanisole O-demethylation and p-nitrophenol conjugation in perfused rat livers, in: Microsomes, Drug Oxidations and Chemical Carcinogenesis, Vol. II (M. J. Coon, A. H. Conney, R. W. Estabrook, H. V. Gelboin, J. R. Gillette, and P. J. O’Brien, eds.), pp. 913–916, Academic Press, New York.Google Scholar
  229. 229.
    Burke, M. D., Vadi, H., Jernström, B., and Orrenius, S., 1977, Metabolism of benzo[a]pyrene with isolated hepatocytes and the formation and degradation of DNA-binding derivatives, J. Biol. Chem. 252: 6421–6431.Google Scholar
  230. 230.
    Wiebkin, P., Fry, J. R., Jones, C. A., Lowing, R. K., and Bridges, J. W., 1978, Biphenyl metabolism in isolated rat hepatocytes: Effect of induction and nature of the conjugates, Biochem. Pharmacol. 27: 1899–1907.PubMedCrossRefGoogle Scholar
  231. 231.
    Wiebkin, P., Parker, G. L., Fry, J. R., and Bridges, J. W., 1979, Effect of various metabolic inhibitors on biphenyl metabolism in isolated rat hepatocytes, Biochem. Pharmacol. 28: 3315–3321.PubMedCrossRefGoogle Scholar
  232. 232.
    Del Villar, E., Sanchez, E., and Tephley, T. R., 1977, Morphine metabolism. V. Isolation of separation glucuronyltransferase activities for morphine and p-nitrophenol from rabbit liver microsomes, Drug Metab. Dispos. 5: 273–278.PubMedGoogle Scholar
  233. 233.
    Notten, W. R. F., Henderson, P. T., and Kuyper, C. M. A., 1975, Stimulation of the glucuronic acid pathway in isolated rat liver cells by phenobarbital, Int. J. Biochem. 6: 713–718.CrossRefGoogle Scholar
  234. 234.
    Fahl, W. E., Shen, A. L., and Jefcoate, C. R., 1978, UDP-glucuronyl transferase and the conjugation and benzo[a]pyrene metabolites to DNA, Biochem. Biophys. Res. Commun. 85: 891–899.PubMedCrossRefGoogle Scholar
  235. 235.
    Bock, K. W., 1978, Increase of liver microsomal benzo[a]pyrene monooxygenase activity by subsequent glucuronidation, Naunyn-Schmiedeberg’s Arch. Pharmacol. 304: 77–79.CrossRefGoogle Scholar
  236. 236.
    Berry, C. S., 1979, Critical evaluation of UDP-N-acetyl-glucosamine and product glucuronides as allosteric effectors of UDP-glucuronyl transferase, in: Conjugation Reactions in Drug Bio-transformation (A. Aitio, ed.), pp. 233–246, Elsevier/North-Holland, Amsterdam.Google Scholar
  237. 237.
    Powell, G. M., and Curtis, C. C., 1978, Sites of sulfation and the fates of sulfate esters, in: Conjugation Reactions in Drug Biotransformation (A. Aitio, ed.), pp. 409–416, Elsevier/ North-Holland, Amsterdam.Google Scholar
  238. 238.
    Mulder, G. J., and Meerman, J. H. N., 1978, Glucuronidation and sulfation in vivo and in vitro: Selective inhibition of sulfation by drugs and deficiency of inorganic sulfate, in: Conjugation Reactions in Drug Biotransformation (A. Aitio, ed.), pp. 389–397, Elsevier/North-Holland, Amsterdam.Google Scholar
  239. 239.
    Maher, V. M., Miller, E. C., Miller, J. A., and Szybalski, W., 1968, Mutations and decreases in density of transforming DNA produced by derivatives of the carcinogens 2-acetylaminoflu-orene and N-methyl-4 aminoazobenzene, Mol. Pharmacol. 4: 411–426.PubMedGoogle Scholar
  240. 240.
    Miller, J. A., 1970, Carcinogens by chemicals: An overview, Cancer Res. 30: 559–576.PubMedGoogle Scholar
  241. 241.
    Arias, I. M., and Jakoby, W. B., (eds.), 1976, Glutathione: Metabolism and Function, Raven Press, New York.Google Scholar
  242. 242.
    Boyland, E., 1950, The biological significance of metabolism of polycyclic compounds, Biochem. Soc. Svmp. 5: 40–54.Google Scholar
  243. 243.
    Mitchell, J. R., Hinson, J. A., and Nelson, S.D., Glutathione and drug-induced tissue lesions, in: Glutathione: Metabolism and Function (I. M. Arias and W. B. Jakoby, eds.), pp. 357–365, Raven Press, New York.Google Scholar
  244. 244.
    Mithell, J. R., Thorgeirsson, S. S., Potter, W. Z., Jallow, D. J., and Keiser, H., 1974, Acetaminophen-induced hepatic injury: Protective role of glutathione in man and rationale for therapy, Clin. Pharmacol. Ther. 16: 676–687.Google Scholar
  245. 245.
    Boyland, E., and Chasseaud, L. F., 1967, Enzyme-catalysed conjugations of glutathione with unsaturated compounds, Biochem. J. 104: 95–102.PubMedGoogle Scholar
  246. 246.
    Longacre, S. L., Kocsis, J. J., and Snyder, R., 1980, Benzene metabolism and toxicity in CD-I, C57/B6 and DBA/2N mice, in: Microsomes, Drug Oxidations and Chemical Carci-nogenesis, Vol. II (M. J. Coon, A. H. Conney, R. W. Estabrook, H. V. Gelboin, J. R. Gillette, and P. J. O’Brien, eds.), pp. 897–902, Academic Press, New York.Google Scholar
  247. 247.
    Thor, H. P., Thorold, S., and Orrenius, S., 1980, Mechanisms of cytochrome P-450-mediated cytotoxicity studied in isolated hepatocytes, in: Microsomes and Drug Oxidations (M. J. Coon, ed.), pp. 907–911, Academic Press, New York.Google Scholar
  248. 248.
    Gelboin, H. V., Selkirk, J. K., Yang, S. K., Wiehel, F. J., and Nemoto, N., 1976, Benzo[a]pyrene metabolism by mixed-function oxygenase, hydratases, and glutathione S-transferses: Analysis by high pressure liquid chromatography, in: Glutathione: Metabolism and Function (I. M. Arias and W. B. Jakoby, eds.), pp. 339–356, Raven Press, New York.Google Scholar
  249. 249.
    Van Anda, J., Bend, J. R., and Fouts, J. R., 1978, Effect of diethyl maleate pretreatment on metabolism and toxicity of 14C-styrene oxide in the isolated perfused rat liver, Pharmacologist 20: 200.Google Scholar
  250. 250.
    Meister, A., 1977, Glutathione and the γ-glutamyl cycle, in: Glutathione: Metabolism and Function (I. M., Arias and W. Jakoby, eds.), pp. 35–43, Raven Press, New York.Google Scholar
  251. 251.
    Ryan, A. J., and Bend, J. R., 1977, The metabolism of styrene oxide in the isolated perfused liver, Drug. Metab. Dispos. 5: 363–367.PubMedGoogle Scholar
  252. 252.
    Van Anda, J., Smith, B. R., and Bend, J. R., 1979, Concentration-dependent metabolism and toxicity of [14C]styrene oxide in the isolated perfused rat liver, J. Pharmacol. Exp. Ther. 211: 207–212.PubMedGoogle Scholar
  253. 253.
    Smith, B. R., Philpot, R. M., and Bend, J. R., 1978, Metabolism of benzo[a]pyrene by the isolated perfused rabbit lung, Drug Metab. Dispos. 6: 425–431.PubMedGoogle Scholar
  254. 254.
    Smith, B. R., and Bend, J. R., 1979, Metabolism and excretion of benzo[a]pyrene 4, 5-oxide by the isolated perfused rat liver, Cancer Res. 39: 2051–2056.PubMedGoogle Scholar
  255. 255.
    Pang, K. S., and Terrell, J. A., 1981, Conjugation kinetics of acetaminophen by the perfused rat liver preparation, Biochem. Pharmacol. 30: 1959–1965.PubMedCrossRefGoogle Scholar
  256. 256.
    Pang, K. S., Koster, H., Halsema, I. C. M., Scholtens, E., Mulder, G. J., and Stillwell, R. N., 1983, Normal and retrograde perfusion to probe the zonal distribution of sulfation and glucuronidation activities of harmol in the perfused rat liver preparation, J. Pharmacol. Exp. Ther. 224: 647–653.PubMedGoogle Scholar
  257. 257.
    De Baun, J. R., Smith, J. Y., Miller, E. C., and Miller, J. A., 1970, Reactivity in vivo of the carcinogen N-hydroxy-2-acetylaminofluorene: Increases by sulfate ion, in Science 167: 184–186.CrossRefGoogle Scholar
  258. 258.
    Desmond, P. V., James, R., Schenker, S., Gerkens, J. F., and Branch, R. A., 1981, Preservation of glucuronidation in carbon tetrachloride-induced acute liver injury in the rat, Biochem. Pharmacol. 30: 993–999.PubMedCrossRefGoogle Scholar
  259. 259.
    Tsukuda, T., Thurman, R. G., and Kauffman, F. C., 1983, Effect of reducing agents on distribution and kinetic properties of UDP-glucuronyl transferase in periportal and pericentral zones of rat liver, Fed. Proc. 49: 912.Google Scholar
  260. 260.
    Conway, J. G., Kauffman, F. C., Tsukuda, T., and Thurman, R. G., 1984, Glucuronidation of 7-hydroxycoumarin in periportal and pericentral regions of the liver lobule, Mol. Pharmacol. 25: 158–164.Google Scholar
  261. 261.
    Lowry, O. H., 1953, The quantitative histochemistry of the brain: Histological sampling, J. Histochem. Cytochem. 1: 420–428.PubMedCrossRefGoogle Scholar
  262. 262.
    Lowry, O. H., and Passonneau, J. V., 1972, A Flexible System of Enzymatic Analysis, Academic Press, New York.Google Scholar
  263. 263.
    Owens, J. W., and Stahl, P., 1976, Purification and characterization of rat liver microsomal β-glucuronidase, Biochim. Biophys. Act. 438: 474–476.Google Scholar
  264. 264.
    Paigen, K., 1979, Acid Hydrolyses as models of genetic control, Annu. Rev. Genetics 13: 417–466.CrossRefGoogle Scholar
  265. 265.
    Schöllhammer, I., Poll, D. S., and Bischell, M. H., 1975, Liver microsomal β-glucuronidase and UDP-glucuronyltransferase, Enzyme 20: 269–275.PubMedGoogle Scholar
  266. 266.
    Belinsky, S. A., Kauffman, F. C., Sokolove, P. M., Tsukuda, T., and Thurman, R. G., 1984, Calcium-mediated inhibition of glucuronidation by epinephrine in the perfused rat liver, J. Biol. Chem. 259: 7705–7711.PubMedGoogle Scholar
  267. 267.
    Sokolove, P. M., Wilcox, M. A., Thurman, R. G., and Kauffman, F. C., 1984, Stimulation of hepatic microsomal β-glucuronidase by calcium, Biochem. Biophys. Res. Comm 121: 897–993.CrossRefGoogle Scholar
  268. 268.
    Miller, D. L., Harasin, J. M., and Gumucio, J. J., 1978, Bromobenzene-induced zonal necrosis in hepatic acinus, Exp. Mol. Pathol. 29: 358–370.PubMedCrossRefGoogle Scholar
  269. 269.
    Deane, H. W., 1944, A cytological study of the diurnal cycle of the liver of the mouse in relation to storage and secretion, Anat. Rec. 88: 39–65.CrossRefGoogle Scholar
  270. 270.
    Sasse, D., 1975, Dynamics of liver glycogen, Histochemistry 45: 237–254.PubMedCrossRefGoogle Scholar
  271. 271.
    Thurman, R. G., Reinke, L. A., Belinsky, S. A., Evans, R. K., and Kauffman, F. C., 1981, Co-regulation of mixed-function oxidation and glucuronidation of p-nitrophenol in the perfused rat liver by carbohydrate reserves, Arch. Biochem. Biophys. 209: 137–142.PubMedCrossRefGoogle Scholar
  272. 272.
    Moldeus, P., Anderson, B., and Gergely, V., 1979, Regulation of glucuronidation and sulfate conjugation in isolated hepatocytes, Drug Metab. Dispos. 7: 416–417.PubMedGoogle Scholar
  273. 273.
    Mulder, G. J., and Scholtens, E., 1978, The availability of inorganic sulphate in blood for sulphate conjugation of drugs in rat liver in vivo: (S35)Sulphate incorporation into harmol sulphate, Biochem. J. 172: 247–251.PubMedGoogle Scholar
  274. 274.
    Kosower, E. M., 1976, Chemical properties of glutathione, in: Glutathione: Metabolism and Function (I. M. Arias and W. B. Jakoby, eds.), pp. 1–16, Raven Press, New York.Google Scholar
  275. 275.
    Ketterer, B., 1982, The role of nonenzymatic reactions of glutathione in xenobiotic metabolism, Drug Metab. Rev. 13: 161–187.PubMedCrossRefGoogle Scholar
  276. 276.
    Jakoby, W. B., 1978, The glutathione S-transferases: A group of multifunctional detoxification proteins, Adv. Enzymol. 46: 383–414.PubMedGoogle Scholar
  277. 277.
    Lawrence, R. A., and Burk, R. F., 1976, Glutathione peroxidase activity in selenium-deficient rat liver, Biochem. Biophys. Res. Commun. 71: 952–958.PubMedCrossRefGoogle Scholar
  278. 278.
    Boyland, E., and Chasseaud, L. F., 1970, The effect of some carbonyl compounds on rat liver glutathione levels, Biochem. Pharmacol. 19: 1526–1528.PubMedCrossRefGoogle Scholar
  279. 279.
    Williamson, J. M., Boettcher, B., and Meister, A., 1982, Intracellular cysteine delivery system that protects against toxicity by promoting glutathione synthesis, Proc. Natl. Acad. Sci. U.S.A. 79: 6246–6249.PubMedCrossRefGoogle Scholar
  280. 280.
    Davis, D. C., Potter, W. Z., Jollow, D. J., and Mitchell, J. R., 1974, Species differences in hepatic glutathione depletion, covalent binding and hepatic necrosis after acetaminophen, Life Sci. 14: 2099–2109.PubMedCrossRefGoogle Scholar
  281. 281.
    Potter, W. Z., Thorgeirsson, S. S., Jollow, D. J., and Mitchell, J. R., 1974, Acetaminophen-induced hepatic necrosis. V. Correlation in hepatic necrosis, covalent binding and glutathione depletion in hamsters, Pharmacology 12: 129–143.PubMedCrossRefGoogle Scholar
  282. 282.
    Connolly, R. B., and Jaeger, R. J., 1979, Acute hepatotoxicity of vinyl chloride and ethylene: Modification by trichloropropene oxide, diethylmaleate, and cysteine, Toxicol. Appl. Pharmacol. 50: 523–531.CrossRefGoogle Scholar
  283. 283.
    Reid, W. D., Christie, B., Krishna, G., Mitchell, J. R., Moskowitz, J., and Brodie, B. B., 1971, Bromobenzene metabolism and hepatic necrosis, Pharmacology 6: 41–55.PubMedCrossRefGoogle Scholar
  284. 284.
    Asghar, K., Reddy, B. G., and Krishna, G., 1975, Histochemical localization of glutathione in tissues, J. Histochem. Cytochem. 23: 774–779.PubMedCrossRefGoogle Scholar
  285. 284a.
    Ullrich, D., Fischer, G., Katz, N., and Bock, K. W., 1984, Intralobular distribution of UDP-glucuronosyltransferase in liver from untreated, 3-methylcholanthrene-and phenobarbital-treated rats., Chem.-Biochem. Interact. 48: 181–190.CrossRefGoogle Scholar
  286. 285.
    Deml, E., and Oesterle, D., 1980, Histochemical demonstration of enhanced glutathione content in enzyme altered islands induced by carcinogens in rat liver, Cancer Res. 40: 490–491.PubMedGoogle Scholar
  287. 286.
    Smith, M. T., Loveridge, N. Wills, E. D., and Chayen, J., 1979, The distribution of glutathione in the rat liver lobule, Biochem. J. 182: 1103–108.Google Scholar
  288. 287.
    Boyland, E., and Chasseaud, L. F., 1969, The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis, Adv. Enzymol. 32: 173–219.PubMedGoogle Scholar
  289. 288.
    Ketley, J. N., Habig, W. H., and Jakoby, W. B., 1975, Binding of nonsubstrate ligands to the glutathione S-transferases, J. Biol. Chem. 250: 8670–8673.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Ronald G. Thurman
    • 1
  • Frederick C. Kauffman
    • 2
  • Jeffrey Baron
    • 3
  1. 1.Department of PharmacologySchool of Medicine, University of North CarolinaChapel HillUSA
  2. 2.Department of Pharmacology and Experimental TherapeuticsUniversity of Maryland School of MedicineBaltimoreUSA
  3. 3.The Toxicology Center, Department of PharmacologyThe University of Iowa College of MedicineIowa CityUSA

Personalised recommendations