Metabolism of Amino Acids and Ammonia

  • Dieter Häussinger
  • Wolfgang Gerok


Amino acids are not only essential building blocks for the synthesis of peptides, proteins, amino sugars, purines, and pyrimidines, but also a major source of energy in different organs. Apart from this, several amino acids or their derivatives are important for organ-specific functions, such as neurotransmission in the brain or stimulation of hormone secretion by endocrine glands.


Glutamine Synthetase Glutamine Metabolism Carbamoyl Phosphate Urea Synthesis Carbamoyl Phosphate Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schimassek, H., and Gerok, W., 1965, Control of the levels of free amino acids in plasma by the liver, Biochem. Z. 343: 407–415.PubMedGoogle Scholar
  2. 2.
    Ishikawa, E., 1975, The regulation of uptake and output of amino acids by rat tissues, Adv. Enzyme Regul. 14: 117–136.CrossRefGoogle Scholar
  3. 3.
    Krebs, H. A., and Lund, P., 1977, Aspects of the regulation of the metabolism of branched chain amino acids, Adv. Enzyme Regul. 15: 375–394.CrossRefGoogle Scholar
  4. 4.
    Felig, P., 1975, Amino acid metabolism in man, Annu. Rev. Biochem. 44: 933–955.PubMedCrossRefGoogle Scholar
  5. 5.
    Cahill, G. F., Aoki, T. T., and Smith, R. J., 1981, Amino acid cycles in man, Curr. Topics Cell. Regul. 18: 389–399.Google Scholar
  6. 6.
    Christensen, H. N., 1982, Interorgan amino acid nutrition, Physiol. Rev. 62: 1193–1233.PubMedGoogle Scholar
  7. 7.
    Felig, P., and Wahren, J., 1971, Amino acid metabolism in exercising man, J. Clin. Invest. 50: 2703–2714.PubMedCrossRefGoogle Scholar
  8. 8.
    Odessy, R., Khairalla, E., and Goldberg, A. L., 1975, Origin and possible significance of alanine production by skeletal muscle, J. Biol. Chem. 249: 7623–7629.Google Scholar
  9. 9.
    Windmueller, H. G., and Spaeth, A. E., 1980, Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats: Quantitative importance of glutamine, glutamate and aspartate, J.Biol. Chem. 255: 107–112.PubMedGoogle Scholar
  10. 10.
    Windmueller, H. G., 1984, Metabolism of vascular and luminal glutamine by intestinal mucosa in vivo, in: Glutamine Metabolism in Mammalian Tissues (D. Häussinger and H. Sies, eds.), pp. 61–77, Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  11. 11.
    Mallette, L. E., Exton, J. H., and Park, C. R., 1969, Control of gluconeogenesis from amino acids in the perfused rat liver, J. Biol. Chem. 244: 5713–5723.Google Scholar
  12. 12.
    Ross, B. D., Hems, R., and Krebs, H. A., 1967, The role of gluconeogenesis from various percursors in the perfused rat liver, Biochem J. 102: 942–951.PubMedGoogle Scholar
  13. 13.
    Felig, P., Wahren, J., and Räf, L., 1973, Evidence of inter-organ amino acid transport by blood cells in humans, Proc. Natl. Acad. Sci. U.S.A. 70: 1775–1779.PubMedCrossRefGoogle Scholar
  14. 14.
    Tizianello, A., De Ferrari, G., Garibotto, G., Gurreri, G., and Robaudo, C., 1980, Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency, J. Clin. Invest. 65: 1162–1173.PubMedCrossRefGoogle Scholar
  15. 15.
    Schröck, H., and Goldstein, L., 1981, Interorgan relationships for glutamine metabolism in normal and acidotic rats, Am. J. Physiol. 240: E519–E525.PubMedGoogle Scholar
  16. 16.
    Van Slyke, D. D., Phillips, R. A., Hamilton, P. B., Archibald, R. M., Futcher, P. H., and Hiller, A., 1943, Glutamine as a source material of urinary ammonia, J. Biol. Chem. 150: 481–482.Google Scholar
  17. 17.
    Marliss, E. B., Aoki, T. T., Pozefsky, T., Most, A. S., and Cahill, G. F., 1971, Muscle and splanchnic glutamine and glutamate metabolism in postabsorptive and starved man, J. Clin. Invest. 50: 814–817.PubMedCrossRefGoogle Scholar
  18. 18.
    Lund, P., and Watford, M., 1976, Glutamine as a precursor of urea, in: The Urea Cycle (S. Grisolia, R. Baguena, and F. Mayor, eds.), pp. 479–488, Wiley, New York and London.Google Scholar
  19. 19.
    Aikawa, T., Matsutaka, H., Yamamoto, H., Okuda, T., Ishikawa, E., Kawano, T., and Matsumura, E., 1973, Gluconeogenesis and amino acid metabolism: Inter-organal relations and roles of glutamine and alanine in the amino acid metabolism in the fasted rat, Biochem. J. 74: 1003–1017.Google Scholar
  20. 20.
    Rémésy, C., Demigné, E., and Aufrère, J., 1978, Interorgan relationships between glucose, lactate and amino acids in rats fed on high-carbohydrate or high-protein diets, Biochem. J. 170: 321–329.Google Scholar
  21. 21.
    Yamamoto, H., Aikawa, T., Matsutaka, H., Okuda, T., and Ishikawa, E., 1974, Interorganal relationships of amino acid metabolism in fed rats, Am. J. Physiol. 226: 1428–1433.PubMedGoogle Scholar
  22. 22.
    Häussinger, D., Weiss, L., and Sies, H., 1975, Activation of pyruvate dehydrogenase during metabolism of ammonium ions in hemoglobin-free perfused rat liver, Eur. J. Biochem. 52: 421–431.PubMedCrossRefGoogle Scholar
  23. 23.
    Häussinger, D., and Sies, H., 1979, Hepatic glutamine metabolism under the influence of the portal ammonia concentration in the perfused rat liver, Eur. J. Biochem. 101: 179–184.PubMedCrossRefGoogle Scholar
  24. 24.
    Häussinger, D., Gerok, W., and Sies, H., 1983, Regulation of flux through glutaminase and glutamine synthetase in isolated perfused rat liver., Biochim. Biophys. Acta 755: 272–278.PubMedCrossRefGoogle Scholar
  25. 25.
    Sies, H., and Häussinger, D., 1984, Hepatic glutamine and ammonia metabolism: Nitrogen and redox balance and the intercellular glutamine cycle, in Glutamine Metabolism in Mammalian Tissues (D. Häussinger and H. Sies, eds.), pp. 78–97, Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  26. 26.
    Felig, P., Wahren, J., and Ahlborg, G., 1973, Uptake of individual amino acids by the human brain, Proc. Soc. Exp. Biol. Med. 142: 230–231.PubMedGoogle Scholar
  27. 27.
    Ahlborg, G., Felig, P., Hagenfeldt, L., Hendler, R., and Wahren, J., 1974, Substrate turnover during prolonged exercise in man: Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids, J. Clin. Invest. 53: 1080–1090.PubMedCrossRefGoogle Scholar
  28. 28.
    Pozefsky, T., Felig, P., Tobin, J., Soeldner, J. S., and Cahill, G. F., 1969, Amino acid balance across the tissues of the forearm in postabsorptive man: Effects of insulin at two dose levels, J. Clin. Invest. 48: 2273–2282.PubMedCrossRefGoogle Scholar
  29. 29.
    Livesey, G., and Lund, P., 1980, Enzymic determination of branched chain amino acids and oxoacids in rat tissues: Transfer of oxoacids from skeletal muscle to liver in vivo, Biochem. J. 188: 705–713.PubMedGoogle Scholar
  30. 30.
    Gerok, W., and Häussinger, D., 1984, Ammonia detoxication and glutamine metabolism in severe liver disease and its role in the pathogenesis of hepatic encephalopathy, in: Glutamine Metabolism in Mammalian Tissues (D. Häussinger and H. Sies, eds.), pp. 257–277, Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  31. 31.
    Weber, F. L., and Veach, G. L., 1979, The importance of the small intestine in gut ammonia production in the fasting dog, Gastroenterology 77: 235–240.PubMedGoogle Scholar
  32. 32.
    Walser, M., and Bodenlos, L. J., 1959, Urea metabolism in man, J. Clin. Invest. 38: 1617–1626.PubMedCrossRefGoogle Scholar
  33. 33.
    Baertl, J. M., Sancetta, S. M., and Gabuzda, G. J., 1963, Relation of acute potassium depletion to renal ammonium metabolism in patients with cirrhosis, J. Clin. Invest. 42: 696–706.PubMedCrossRefGoogle Scholar
  34. 34.
    Welbourne, T., 1975, Mechanism of renal ammonia production adaptation to chronic acidosis, Med. Clin. North Am. 59: 629–648.PubMedGoogle Scholar
  35. 35.
    Ganda, O. P., and Ruderman, N. B., 1976, Muscle nitrogen metabolism in chronic hepatic insufficiency, Metabolism 25: 427–435.PubMedCrossRefGoogle Scholar
  36. 36.
    Lockwood, A. H., McDonald, J. M., Reiman, R. E., Gelbard, A. S., Laughlin, J. S., Duffy, T. E., and Plum, F., 1979, The dynamics of ammonia metabolism in man: Effects of liver disease and hyperammonemia, J. Clin. Invest. 63: 449–460.PubMedCrossRefGoogle Scholar
  37. 37.
    Lowenstein, J. M., 1972, Ammonia production in muscle and other tissues: The purine nu-cleotide cycle, Physiol. Rev. 52: 382–414.Google Scholar
  38. 38.
    Dawson, A. M., 1978, Regulation of blood ammonia, Gut 19: 504–509.PubMedCrossRefGoogle Scholar
  39. 39.
    Deferrari, G., Garibotto, G., Robaudo, C., Ghiggeri, G. M., and Tizianello, A., 1981, Brain metabolism of amino acids and ammonia in patients with chronic renal insufficiency, Kidney Int. 20: 505–510.PubMedCrossRefGoogle Scholar
  40. 40.
    Krebs, H. A., Hems, R., Lund, P., Halliday, D., and Read, W. W. C., 1978, Sources of ammonia for mammalian urea synthesis, Biochem. J. 176: 733–737.PubMedGoogle Scholar
  41. 41.
    Fine, A., Carlyle, E., and Bourke, E., 1975, Adaptations in nitrogen metabolism in acidosis in man, Kidney Int. 8: 338–339.CrossRefGoogle Scholar
  42. 42.
    Rudman, D., DiFulco, T. J., Galambos, J. T., Smith, R. B., Salam, A. A., and Warren, D. W., 1973, Maximal rates of excretion and synthesis of urea in normal and cirrhotic subjects, J. Clin. Invest. 52: 2241–2249.PubMedCrossRefGoogle Scholar
  43. 43.
    Duda, G. D., and Handler, P., 1958, Kinetics of ammonia metabolism in vivo, J. Biol. Chem. 232: 303–314.PubMedGoogle Scholar
  44. 44.
    Guidotto, G. G., Borghetti, A. F., and Gazzola, G. C., 1978, The regulation of amino acid transport in animal cells, Biochim. Biophys. Acta 515: 329–366.Google Scholar
  45. 45.
    Shotwell, M. A., Kilberg, M. S., and Oxender, D. L., 1983, The regulation of neutral amino acid transport in mammalian cells, Biochim. Biophys. Acta 737: 267–284.PubMedGoogle Scholar
  46. 46.
    Sips, H. J., Groen, A. K., and Tager, J. M., 1980, Plasma membrane transport of alanine is rate-limiting for its metabolism in rat liver parenchymal cells, FEBS Lett. 119: 271–274.PubMedCrossRefGoogle Scholar
  47. 47.
    Fafournoux, P., Rémésy, C., and Demigné, C., 1983, Control of alanine metabolism in rat liver by transport processes or cellular metabolism, Biochem. J. 210: 645–652.PubMedGoogle Scholar
  48. 48.
    Sips, H. J., Van Amelsvoort, M. M., and Van Dam, K., 1980, Amino acid transport in plasma-membrane vesicles from rat liver, Eur. J. Biochem. 105: 217–224.PubMedCrossRefGoogle Scholar
  49. 49.
    Bellemann, P., 1981, Amino acid transport and rubidium-ion uptake in monolayer cultures of hepatocytes from neonatal rats, Biochem. J. 198: 475–483.PubMedGoogle Scholar
  50. 50.
    Fehlmann, M., and Freychet, P., 1981, Hormonal regulation of amino acid transport in isolated rat hepatocytes: Properties of a high affinity transport component induced by glucagon and cyclic AMP, in: Advances in Cyclic Nucleotide Research (J. E. Dumont, P. Greengard, and G. A. Robinson, eds.), Vol. 14, pp. 521–527, Raven Press, New York.Google Scholar
  51. 51.
    Kilberg, S. M., Handlogten, M. E., and Christensen, H. N., 1980, Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine and closely related analogs, J. Biol. Chem. 255: 4011–4019.PubMedGoogle Scholar
  52. 52.
    Hayes, M. R., and McGivan, J. D., 1982, Differential effects of starvation on alanine and glutamine transport in isolated rat hepatocytes, Biochem. J. 204: 365–368.PubMedGoogle Scholar
  53. 53.
    Sips, H. J., DeGraaf, P. A., and Van Dam, K., 1982, Transport of L-aspartate and L-glutamate in plasma-membrane vesicles from rat liver, Eur. J. Biochem. 122: 259–264.PubMedCrossRefGoogle Scholar
  54. 54.
    Häussinger, D., and Gerok, W., 1983, Hepatocyte heterogeneity in glutamate uptake by isolated perfused rat liver, Eur. J. Biochem. 136: 421–425.PubMedCrossRefGoogle Scholar
  55. 55.
    Gebhardt, R., and Mecke, D., 1983, Glutamate uptake by cultured rat hepatocytes is mediated by hormonally inducible, sodium-dependent transport systems, FEBS Lett. 161: 275–278.PubMedCrossRefGoogle Scholar
  56. 56.
    Hensgens, H. E. S. J., Hensgens, L. A. M., Meijer, A. J., Gimpel, J. A., and Tager, J. M., 1976, Ureogenesis and gluconeogenesis from proline: The respiratory chain as site of metabolic control, in: Use of Isolated Liver Cells and Kidney Tubules in Metabolic Studies (J. M. Tager, H. D. Söling, and J. R. Williamson, eds.), pp. 331–338, North-Holland, Amsterdam.Google Scholar
  57. 57.
    Häussinger, D., Gerok, W., and Sies, H., 1982, Inhibition of pyruvate dehydrogenase during the metabolism of glutamine and proline in hemoglobin-free perfused rat liver, Eur. J. Biochem. 126: 69–76.PubMedCrossRefGoogle Scholar
  58. 58.
    Mortimore, G. E., and Pösö, A. R., 1984, Mechanism and control of deprivation-induced protein degradation in liver: Role of glucogenic amino acids, in: Glutamine Metabolism in Mammalian Tissues (D. Häussinger and H. Sies, eds.), pp. 138–157, Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  59. 59.
    Jefferson, L. S., and Korner, A., 1969, Influence of amino acid supply on ribosomes and protein synthesis of perfused rat liver, Biochem. J. 111: 703–712.PubMedGoogle Scholar
  60. 60.
    McGown, E., Richardson, A. G., Henderson, L. M., and Swan, P. B., 1973, Effect of amino acids on ribosome aggregation and protein synthesis in perfused rat liver, J. Nutr. 103: 109–116.PubMedGoogle Scholar
  61. 61.
    Flaim, K. E., Liao, W. S. L., Peavy, D. E., Taylor, J. M., and Jefferson, L. S., 1982, The role of amino acids in the regulation of protein synthesis in perfused rat liver. II. Effects of amino acid deficiency on peptide chain initiation, polysomal aggregation, and distribution of albumin mRNA, J. Biol. Chem. 257: 2939–2946.PubMedGoogle Scholar
  62. 62.
    Sies, H., Summer, K. H., Häussinger, D., and Bücher, T., 1976, NADPH utilization in mitochondria: Urea synthesis from ammonia in rat liver cells, in: Use of Isolated Liver Cells and Kidney Tubules in Metabolic Studies (J. M. Tager, H. D. Söling, and J. R. Williamson, eds.), pp. 311–316, North-Holland, Amsterdam.Google Scholar
  63. 63.
    Krebs, H. A., Hems, R., and Lund, P., 1972, Some regulatory mechanisms in the synthesis of urea in the mammalian liver, Adv. Enzyme Regul. 11: 361–377.CrossRefGoogle Scholar
  64. 64.
    Schimke, R. T., 1962, Adaptive characteristics of urea cycle enzymes in the rat, J. Biol. Chem. 237: 459–468.PubMedGoogle Scholar
  65. 65.
    Schimke, R. T., 1962, Differential effects of fasting and protein-free diets on levels of urea cycle enzymes in rat liver, J. Biol. Chem. 237: 1921–1924.PubMedGoogle Scholar
  66. 66.
    Schimke, R. T., 1963, Studies on factors affecting the levels of urea cycle enzymes in rat liver, J. Biol. Chem. 238: 1012–1018.PubMedGoogle Scholar
  67. 67.
    Meijer, A. J., and Hensgens, H. E. S. J., 1982, Ureogenesis, in: Metabolic Compartmentation (H. Sies, ed.), pp. 259–286, Academic Press, New York.Google Scholar
  68. 68.
    Saheki, T., and Katunuma, N., 1975, Analysis of regulatory factors for urea synthesis by isolated perfused rat liver. I. Urea synthesis with ammonia and glutamine as nitrogen sources, J. Biochem. 77: 659–669.PubMedGoogle Scholar
  69. 69.
    Lusty, C. J., 1978, Carbamoylphosphate synthetase I of rat liver mitochondria, Eur. J. Biochem. 85: 373–383.PubMedCrossRefGoogle Scholar
  70. 70.
    Grisolia, S., and Cohen, P. P., 1953, Catalytic role of glutamate derivatives in citrulline biosynthesis, J. Biol. Chem. 204: 753–757.PubMedGoogle Scholar
  71. 71.
    Shigesada, K., and Tatibana, M., 1971, Role of acteylglutamate in ureotelism. II. Occurrence and biosynthesis of acetylglutamate in mouse and rat tissues. J. Biol. Chem. 246: 5588–5595.PubMedGoogle Scholar
  72. 72.
    McGivan, J. D., Bradford, N. M., and Mendes-Mourao, J., 1976, The regulation of carbamoylphosphate synthetase activity in rat liver mitochondria, Biochem. J. 154: 415–421.PubMedGoogle Scholar
  73. 73.
    Shigesada, K., and Tatibana, M., 1978, N-Acetylglutamate synthetase from rat-liver mitochondria, Eur. J. Biochem. 84: 285–291.PubMedCrossRefGoogle Scholar
  74. 74.
    Shigesada, K., Aoyagi, K., and Tatibana, M., 1978, Role of acetylglutamate in ureotelism: Variations in acetylglutamate level and its possible significance in control of urea synthesis in mammalian liver, Eur. J. Biochem. 85: 385–391.PubMedCrossRefGoogle Scholar
  75. 75.
    Hensgens, H. E. S. J., Verhoeven, A. J., and Meijer, A. J., 1980, The relationship between intramitochondrial N-acetylglutamate and activity of carbamoyl-phosphate synthetase (ammonia): The effect of glucagon, Eur. J. Biochem. 107: 197–205.PubMedCrossRefGoogle Scholar
  76. 76.
    Martin-Requero, A., Corkey, B. E., Cerdan, S., Walajitis-Rode, E., Parrilla, R. L., and Williamson, J. R., 1983, Interactions between ketoisovalerate metabolism and the pathways of gluconeogenesis and urea synthesis in isolated hepatocytes, J. Biol. Chem. 258: 3673–3681.PubMedGoogle Scholar
  77. 77.
    Powers, S., 1981, Regulation of rat liver carbamoylphosphate synthetase I: Inhibition by metal ions and activation by amino acids and other chelating agents, J. Biol. Chem. 256: 11,160–11,165.PubMedGoogle Scholar
  78. 78.
    Guthörlein, G., and Knappe, J., 1969, Structure and function of carbamoylphosphate synthetase: On the mechanism of bicarbonate activation, Eur. J. Biochem. 8: 207–214.CrossRefGoogle Scholar
  79. 79.
    Chamalaun, R. A. F. M., and Tager, J. M., 1970, Nitrogen metabolism in the perfused rat liver, Biochim. Biophys. Acta 222: 119–134.PubMedCrossRefGoogle Scholar
  80. 80.
    Katunuma, N., Okada, M., and Nishii, Y., 1966, Regulation of the urea cycle and the TCA cycle by ammonia, Adv. Enzyme Regul. 4: 317–335.PubMedCrossRefGoogle Scholar
  81. 81.
    Volpe, P., Sawamura, R., and Strecker, H. J., 1969, Control of ornithine transaminase in rat liver and kidney, J. Biol. Chem. 244: 719–726.PubMedGoogle Scholar
  82. 82.
    Bradford, N. M., and McGivan, J. D., 1980, Evidence for the existence of an orni-thine/citrulline antiporter in rat liver mitochondria, FEBS Lett. 113: 294–298.PubMedCrossRefGoogle Scholar
  83. 83.
    Elliot, K. R. F., and Tipton, K. F., 1974, Product inhibition studies on bovine liver carba-moylphosphate synthetase, Biochem. J. 141: 817–824.Google Scholar
  84. 84.
    Lof, C., Wanders, R. J. A., and Meijer, A. J., 1982, Activity of carbamoyl-phosphate synthetase (ammonia) in isolated rat-liver mitochondria: [Cycling] of carbamoyl-phosphate in the absence of ornithine, Eur. J. Biochem. 124: 89–94.PubMedCrossRefGoogle Scholar
  85. 85.
    Hensgens, H. E. S. J., and Meijer, A. J., 1980, Inhibition of urea-cycle activity by high concentrations of alanine, Biochem. J. 186: 1–4.PubMedGoogle Scholar
  86. 86.
    Takada, S., Saheki, T., Igarashi, Y., and Katsunuma, T., 1979, Studies on rat liver argini-nosuccinate synthetase: Inhibition by various amino acids, J. Biochem. 85: 1309–1314.PubMedGoogle Scholar
  87. 87.
    Lund, P., 1971, Control of glutamine synthesis in rat liver, Biochem. J. 124: 653–660.PubMedGoogle Scholar
  88. 88.
    Tate, S. S., and Meister, A., 1971, Regulation of rat liver glutamine synthetase: Activation by ketoglutarate and inhibition by glycine, alanine and carbamoylphosphate, Proc. Natl. Acad. Sci. U.S.A. 68: 781–785.PubMedCrossRefGoogle Scholar
  89. 89.
    Deuel, T. F., Louie, M., and Lerner, A., 1978, Glutamine synthetase from rat liver, J. Biol. Chem. 253: 6111–6118.PubMedGoogle Scholar
  90. 90.
    Joseph, S. K., Bradford, N. M., and McGivan, J. D., 1979, Inhibition of glutamine synthetase activity by manganous ions in a cytosol extract of rat liver, Biochem. J. 184: 477–480.PubMedGoogle Scholar
  91. 91.
    Häussinger, D., and Sies, H., 1984, Effect of phenylephrine on glutamate and glutamine metabolism in isolated perfused rat liver, Biochem. J. 221: 651–658.PubMedGoogle Scholar
  92. 92.
    Rappaport, A. M., 1976, The microcirculatory acinar concept of normal and pathological hepatic structure, Beitr. Pathol. 157: 215–243.PubMedCrossRefGoogle Scholar
  93. 93.
    Jungermann, K., and Katz, N., 1982, Metabolic heterogeneity of liver parenchyma, in: Metabolic Compartmentation (H. Sies, ed.), pp. 411–435, Academic Press, New York.Google Scholar
  94. 94.
    Häussinger, D., 1983, Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intercellular glutamine cycle during ureogenesis in perfused rat liver, Eur. J. Biochem. 133: 269–275.PubMedCrossRefGoogle Scholar
  95. 95.
    Gebhardt, R., and Mecke, D., 1983, Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture, EMBO J. 2: 567–570.PubMedGoogle Scholar
  96. 96.
    Shank, R. E., Morrison, G., Cheng, C. H., Karl, I., and Schwartz, R., 1959, Cell heterogeneity within the hepatic lobule (quantitative histochemistry), J. Histochem. Cytochem. 7: 237–239.PubMedCrossRefGoogle Scholar
  97. 97.
    Guder, W. G., Habicht, A., Kleissl, J., Schmidt, U., and Wieland, O. H., 1975, The diagnostic significance of liver cell inhomogeneity: Serum enzymes in patients with central liver necrosis and the distribution of glutamate dehydrogenase in normal human liver, Z. Klin. Chem. Klin. Biochem. 13: 311–318.PubMedGoogle Scholar
  98. 98.
    Welsh, F. A., 1972, Changes in distribution of enzymes within the liver lobule during adaptive increases, J. Histochem. Cytochem. 20: 107–111.PubMedCrossRefGoogle Scholar
  99. 99.
    Morrison, G. R., Brock, F. E., Karl, I., and Shank, R. E., 1965, Quantitative analysis of regenerating and degenerating areas within the lobule of the carbon tetrachloride-injured liver, Arch. Biochem. Biophys. 111: 448–464.PubMedCrossRefGoogle Scholar
  100. 100.
    Wimmer, M., and Pette, D., 1979, Microphotometric studies on intraacinar enzyme distribution in rat liver, Histochemistry 64: 23–33.PubMedCrossRefGoogle Scholar
  101. 101.
    Iannaccone, P. M., and Koizumi, J., 1983, Pattern and rate of disappearance of gamma-glutamyl transpeptidase activity in fetal and neonatal rat liver, J. Histochem. Cytochem. 31: 1312–1316.PubMedCrossRefGoogle Scholar
  102. 102.
    Gaasbeeek Janzen, J. W., Lamers, W. H., Moorman, A. F. M., DeGraaf, A., Los, J. A., and Charles, R., 1984, The localization of carbamoylphosphate synthase in adult rat liver, Histochem. Cytochem. 32: 557–564.CrossRefGoogle Scholar
  103. 103.
    Mizutani, A., 1968, Cytochemical demonstration of ornithine carbamoyltransferase activity in liver mitochondria of rat and mouse, J. Histochem. Cytochem. 16: 172–180.PubMedCrossRefGoogle Scholar
  104. 104.
    Saheki, T., and Yagi, Y., 1983, Unpublished.Google Scholar
  105. 105.
    Kanamura, S., and Asada-Kubota, M., 1980, The heterogeneity of hepatocytes during the postnatal development of the mouse, Anat. Embryol. 158: 151–159.PubMedCrossRefGoogle Scholar
  106. 106.
    Sasse, S., Katz, N., and Jungermann, K., 1975, Functional heterogeneity of rat liver parenchyma and of isolated hepatocytes, FEBS Lett. 57: 83–88.PubMedCrossRefGoogle Scholar
  107. 107.
    Nauck, M., Wölfle, D., Katz, N., and Jungermann, K., 1981, Modulation of the gluca-gon-dependent induction of phosphoenolpyruvate carboxykinase and tyrosine aminotransfer-ase by arterial and venous oxygen concentrations in hepatocyte cultures, Eur. J. Biochem. 119: 657–661.PubMedCrossRefGoogle Scholar
  108. 108.
    Gebhardt, R., and Mecke, D., 1984, Cellular distribution and regulation of glutamine synthetase in liver, in: Glutamine Metabolism in Mammalian Tissues (D. Häussinger and H. Sies, eds.), pp. 98–121, Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  109. 109.
    Häussinger, D., and Gerok, W., 1984, Hepatocyte heterogeneity in ammonia metabolism: Impairment of glutamine synthesis in CCl4 induced liver cell necrosis with no effect on urea synthesis. Chem.-Biol. Interact. 48: 191–194.PubMedCrossRefGoogle Scholar
  110. 110.
    Swick, R. W., Tollaksen, S. L., Nance, S. L., and Thomson, J. F., 1970, The unique distribution of ornithine aminotransferase in rat liver mitochondria, Arch. Biochem. Biophys. 136: 212–218.PubMedCrossRefGoogle Scholar
  111. 111.
    Ji, S., Lemasters, J. J., Christenson, V., and Thurman, R. G., 1982, Periportal and pericentral pyridine nucleotide fluorescence from the surface of the perfused liver: Evaluation of the hypothesis that chronic treatment with ethanol produces pericental hypoxia, Proc. Natl. Acad. Sci. U.S.A. 79: 5415–5419.PubMedCrossRefGoogle Scholar
  112. 112.
    Ji, S., Lemasters, J. J., and Thurman, R. G., 1980, A non-invasive method to study metabolic events within sublobular regions of hemoglobin-free perfused liver, FEBS Lett. 113: 37–41.PubMedCrossRefGoogle Scholar
  113. 113.
    Häussinger, D., Soboll, S., Meijer, A. J., Tager, J. M., and Sies, H., 1985, Role of plasma membrane transport in hepatic glutamine metabolism, Eur. J. Biochem. 152: 597–603.PubMedCrossRefGoogle Scholar
  114. 114.
    Oliver, J., Koelz, A. M., Costello, J., and Bourke, E., 1977, Acid-base induced alterations in glutamine metabolism and ureogenesis in perfused muscle and liver of the rat, Eur. J. Clin. Invest. 7: 445–449.PubMedCrossRefGoogle Scholar
  115. 115.
    Atkinson, D. E., and Camien, M. N., 1982, The role of urea synthesis in the removal of metabolic bicarbonate and the regulation of blood pH, Curr. Top. Cell. Regul. 21: 261–302.PubMedGoogle Scholar
  116. 116.
    Häussinger, D., Gerok, W., and Sies, H., 1984, Hepatic role in pH regulation: Role of the intercellular glutamine cycle, Trends Biochem. Sci. 9: 300–302.CrossRefGoogle Scholar
  117. 117.
    Lueck, J. D., and Miller, L. L., 1970, The effect of perfusate pH on glutamine metabolism in the isolated perfused rat liver, J. Biol. Chem. 245: 5491–5497.PubMedGoogle Scholar
  118. 118.
    Häussinger, D., Akerboom, T. P. M., and Sies, H., 1980, The role of pH and the lack of a requirement for hydrogen carbonate in the regulation of hepatic glutamine metabolism, Hoppe-Seyler’s Z. Physiol. Chem. 361: 995–1001.PubMedCrossRefGoogle Scholar
  119. 119.
    Verhoeven, A. J., Van Iwaarden, J. F., Joseph, S. K., and Meijer, A. J., 1983, Control of rat liver glutaminase by ammonia and pH, Eur. J. Biochem. 133: 241–244.PubMedCrossRefGoogle Scholar
  120. 120.
    Häussinger, D., and Gerok, W., 1984, Regulation of hepatic glutamate metabolism. Role of 2-oxoacids in glutamate release from isolated perfused rat liver, Eur. J. Biochem. 143: 491–497.PubMedCrossRefGoogle Scholar
  121. 121.
    Meijer, A. J., Lof, C., Ramos, I. C., and Verhoeven, A., 1985, Control of ureogenesis, Eur. J. Biochem. 148: 189–196.PubMedCrossRefGoogle Scholar
  122. 122.
    Cohen, N. S., Kyan, F. S., Kyan, S.S., Cheung, C. W., and Raijman, L., 1985, The apparent Km of ammonia for carbamoyl phosphate synthetase (ammonia) in situ, Biochem. J. 229: 205–211.PubMedGoogle Scholar
  123. 123.
    Dodgson, S. J., Forster, R. E., Schwed, D. A., and Storey, B. T., 1983, Contribution of matrix carbonic anhydrase to citrulline synthesis in isolated guinea pig liver mitochondria, J. Biol. Chem. 258: 7696–7701.PubMedGoogle Scholar
  124. 124.
    Häussinger, D., and Gerok, W., 1985, Hepatic urea synthesis and pH regulation: role of CO2, HCO3, pH and the activity of carbonic anhydrase, Eur. J. Biochem. 152: 381–386.PubMedCrossRefGoogle Scholar
  125. 125.
    Pausch, J., Rasenack, J., Häussinger, D., and Gerok, W., 1985, Hepatic carbamoylphosphate metabolism. Role of cytosolic and mitochondrial carbamoylphosphate in de novo pyrimidine synthesis, Eur. J. Biochem. 150: 189–194.PubMedCrossRefGoogle Scholar
  126. 126.
    Meister, A., 1974, Glutamine synthesis in mammals, in: The Enzymes (P. D., Boyer, ed.), Vol. 10, pp. 699–754, Academic Press, New York.Google Scholar
  127. 127.
    Häussinger, D., Stehle, T., and Gerok, W., 1985, Glutamine metabolism in isolated perfused rat liver. The transamination pathway, Biol. Chem. Hoppe-Seyler 366: 527–536.PubMedCrossRefGoogle Scholar
  128. 128.
    Gaasbeek Janzen, J. W., Gebhardt, R., te Kortschot, A., ten Vorde, G. H. J., Lamers, W. H., Moorman, A. F. M., and Charles, R., 1985, The distribution of carbamoylphosphate synthetase and glutamine synthetase in perinatal liver, Abstr. Commun. 13th UIB Congress, Mo-296.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Dieter Häussinger
    • 1
  • Wolfgang Gerok
    • 1
  1. 1.Medizinische UniversitätsklinikFreiburgFederal Republic of Germany

Personalised recommendations